Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cntzi | Structured version Visualization version GIF version |
Description: Membership in a centralizer (inference). (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
cntzi.p | ⊢ + = (+g‘𝑀) |
cntzi.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
cntzi | ⊢ ((𝑋 ∈ (𝑍‘𝑆) ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
2 | cntzi.z | . . . . . 6 ⊢ 𝑍 = (Cntz‘𝑀) | |
3 | 1, 2 | cntzrcl 18848 | . . . . 5 ⊢ (𝑋 ∈ (𝑍‘𝑆) → (𝑀 ∈ V ∧ 𝑆 ⊆ (Base‘𝑀))) |
4 | cntzi.p | . . . . . 6 ⊢ + = (+g‘𝑀) | |
5 | 1, 4, 2 | elcntz 18843 | . . . . 5 ⊢ (𝑆 ⊆ (Base‘𝑀) → (𝑋 ∈ (𝑍‘𝑆) ↔ (𝑋 ∈ (Base‘𝑀) ∧ ∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋)))) |
6 | 3, 5 | simpl2im 503 | . . . 4 ⊢ (𝑋 ∈ (𝑍‘𝑆) → (𝑋 ∈ (𝑍‘𝑆) ↔ (𝑋 ∈ (Base‘𝑀) ∧ ∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋)))) |
7 | 6 | simplbda 499 | . . 3 ⊢ ((𝑋 ∈ (𝑍‘𝑆) ∧ 𝑋 ∈ (𝑍‘𝑆)) → ∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋)) |
8 | 7 | anidms 566 | . 2 ⊢ (𝑋 ∈ (𝑍‘𝑆) → ∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋)) |
9 | oveq2 7263 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋 + 𝑦) = (𝑋 + 𝑌)) | |
10 | oveq1 7262 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑦 + 𝑋) = (𝑌 + 𝑋)) | |
11 | 9, 10 | eqeq12d 2754 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋 + 𝑦) = (𝑦 + 𝑋) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋))) |
12 | 11 | rspccva 3551 | . 2 ⊢ ((∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋) ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
13 | 8, 12 | sylan 579 | 1 ⊢ ((𝑋 ∈ (𝑍‘𝑆) ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Cntzccntz 18836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-cntz 18838 |
This theorem is referenced by: cntri 18852 cntz2ss 18854 cntzsubm 18857 cntzsubg 18858 cntzmhm 18860 cntrsubgnsg 18862 lsmsubm 19173 lsmsubg 19174 lsmcom2 19175 subgdisj1 19212 subgdisj2 19213 pj1id 19220 pj1ghm 19224 gsumval3eu 19420 gsumval3 19423 gsumzaddlem 19437 gsumzoppg 19460 dprdfcntz 19533 cntzsubr 19972 cntzsdrg 19985 |
Copyright terms: Public domain | W3C validator |