MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzi Structured version   Visualization version   GIF version

Theorem cntzi 19360
Description: Membership in a centralizer (inference). (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
cntzi.p + = (+g𝑀)
cntzi.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzi ((𝑋 ∈ (𝑍𝑆) ∧ 𝑌𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋))

Proof of Theorem cntzi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
2 cntzi.z . . . . . 6 𝑍 = (Cntz‘𝑀)
31, 2cntzrcl 19358 . . . . 5 (𝑋 ∈ (𝑍𝑆) → (𝑀 ∈ V ∧ 𝑆 ⊆ (Base‘𝑀)))
4 cntzi.p . . . . . 6 + = (+g𝑀)
51, 4, 2elcntz 19353 . . . . 5 (𝑆 ⊆ (Base‘𝑀) → (𝑋 ∈ (𝑍𝑆) ↔ (𝑋 ∈ (Base‘𝑀) ∧ ∀𝑦𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋))))
63, 5simpl2im 503 . . . 4 (𝑋 ∈ (𝑍𝑆) → (𝑋 ∈ (𝑍𝑆) ↔ (𝑋 ∈ (Base‘𝑀) ∧ ∀𝑦𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋))))
76simplbda 499 . . 3 ((𝑋 ∈ (𝑍𝑆) ∧ 𝑋 ∈ (𝑍𝑆)) → ∀𝑦𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋))
87anidms 566 . 2 (𝑋 ∈ (𝑍𝑆) → ∀𝑦𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋))
9 oveq2 7439 . . . 4 (𝑦 = 𝑌 → (𝑋 + 𝑦) = (𝑋 + 𝑌))
10 oveq1 7438 . . . 4 (𝑦 = 𝑌 → (𝑦 + 𝑋) = (𝑌 + 𝑋))
119, 10eqeq12d 2751 . . 3 (𝑦 = 𝑌 → ((𝑋 + 𝑦) = (𝑦 + 𝑋) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋)))
1211rspccva 3621 . 2 ((∀𝑦𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋) ∧ 𝑌𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
138, 12sylan 580 1 ((𝑋 ∈ (𝑍𝑆) ∧ 𝑌𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  wss 3963  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  Cntzccntz 19346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-cntz 19348
This theorem is referenced by:  cntri  19363  cntzsgrpcl  19365  cntz2ss  19366  cntzsubm  19369  cntzsubg  19370  cntzmhm  19372  cntrsubgnsg  19374  lsmsubm  19686  lsmsubg  19687  lsmcom2  19688  subgdisj1  19724  subgdisj2  19725  pj1id  19732  pj1ghm  19736  gsumval3eu  19937  gsumval3  19940  gsumzaddlem  19954  gsumzoppg  19977  dprdfcntz  20050  cntzsubrng  20584  cntzsubr  20623  cntzsdrg  20820
  Copyright terms: Public domain W3C validator