![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntzi | Structured version Visualization version GIF version |
Description: Membership in a centralizer (inference). (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
cntzi.p | โข + = (+gโ๐) |
cntzi.z | โข ๐ = (Cntzโ๐) |
Ref | Expression |
---|---|
cntzi | โข ((๐ โ (๐โ๐) โง ๐ โ ๐) โ (๐ + ๐) = (๐ + ๐)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . . . 6 โข (Baseโ๐) = (Baseโ๐) | |
2 | cntzi.z | . . . . . 6 โข ๐ = (Cntzโ๐) | |
3 | 1, 2 | cntzrcl 19190 | . . . . 5 โข (๐ โ (๐โ๐) โ (๐ โ V โง ๐ โ (Baseโ๐))) |
4 | cntzi.p | . . . . . 6 โข + = (+gโ๐) | |
5 | 1, 4, 2 | elcntz 19185 | . . . . 5 โข (๐ โ (Baseโ๐) โ (๐ โ (๐โ๐) โ (๐ โ (Baseโ๐) โง โ๐ฆ โ ๐ (๐ + ๐ฆ) = (๐ฆ + ๐)))) |
6 | 3, 5 | simpl2im 504 | . . . 4 โข (๐ โ (๐โ๐) โ (๐ โ (๐โ๐) โ (๐ โ (Baseโ๐) โง โ๐ฆ โ ๐ (๐ + ๐ฆ) = (๐ฆ + ๐)))) |
7 | 6 | simplbda 500 | . . 3 โข ((๐ โ (๐โ๐) โง ๐ โ (๐โ๐)) โ โ๐ฆ โ ๐ (๐ + ๐ฆ) = (๐ฆ + ๐)) |
8 | 7 | anidms 567 | . 2 โข (๐ โ (๐โ๐) โ โ๐ฆ โ ๐ (๐ + ๐ฆ) = (๐ฆ + ๐)) |
9 | oveq2 7416 | . . . 4 โข (๐ฆ = ๐ โ (๐ + ๐ฆ) = (๐ + ๐)) | |
10 | oveq1 7415 | . . . 4 โข (๐ฆ = ๐ โ (๐ฆ + ๐) = (๐ + ๐)) | |
11 | 9, 10 | eqeq12d 2748 | . . 3 โข (๐ฆ = ๐ โ ((๐ + ๐ฆ) = (๐ฆ + ๐) โ (๐ + ๐) = (๐ + ๐))) |
12 | 11 | rspccva 3611 | . 2 โข ((โ๐ฆ โ ๐ (๐ + ๐ฆ) = (๐ฆ + ๐) โง ๐ โ ๐) โ (๐ + ๐) = (๐ + ๐)) |
13 | 8, 12 | sylan 580 | 1 โข ((๐ โ (๐โ๐) โง ๐ โ ๐) โ (๐ + ๐) = (๐ + ๐)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wb 205 โง wa 396 = wceq 1541 โ wcel 2106 โwral 3061 Vcvv 3474 โ wss 3948 โcfv 6543 (class class class)co 7408 Basecbs 17143 +gcplusg 17196 Cntzccntz 19178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-cntz 19180 |
This theorem is referenced by: cntri 19195 cntzsgrpcl 19197 cntz2ss 19198 cntzsubm 19201 cntzsubg 19202 cntzmhm 19204 cntrsubgnsg 19206 lsmsubm 19520 lsmsubg 19521 lsmcom2 19522 subgdisj1 19558 subgdisj2 19559 pj1id 19566 pj1ghm 19570 gsumval3eu 19771 gsumval3 19774 gsumzaddlem 19788 gsumzoppg 19811 dprdfcntz 19884 cntzsubr 20352 cntzsdrg 20417 cntzsubrng 46736 |
Copyright terms: Public domain | W3C validator |