MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzi Structured version   Visualization version   GIF version

Theorem cntzi 19243
Description: Membership in a centralizer (inference). (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
cntzi.p + = (+g𝑀)
cntzi.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzi ((𝑋 ∈ (𝑍𝑆) ∧ 𝑌𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋))

Proof of Theorem cntzi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
2 cntzi.z . . . . . 6 𝑍 = (Cntz‘𝑀)
31, 2cntzrcl 19241 . . . . 5 (𝑋 ∈ (𝑍𝑆) → (𝑀 ∈ V ∧ 𝑆 ⊆ (Base‘𝑀)))
4 cntzi.p . . . . . 6 + = (+g𝑀)
51, 4, 2elcntz 19236 . . . . 5 (𝑆 ⊆ (Base‘𝑀) → (𝑋 ∈ (𝑍𝑆) ↔ (𝑋 ∈ (Base‘𝑀) ∧ ∀𝑦𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋))))
63, 5simpl2im 503 . . . 4 (𝑋 ∈ (𝑍𝑆) → (𝑋 ∈ (𝑍𝑆) ↔ (𝑋 ∈ (Base‘𝑀) ∧ ∀𝑦𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋))))
76simplbda 499 . . 3 ((𝑋 ∈ (𝑍𝑆) ∧ 𝑋 ∈ (𝑍𝑆)) → ∀𝑦𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋))
87anidms 566 . 2 (𝑋 ∈ (𝑍𝑆) → ∀𝑦𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋))
9 oveq2 7377 . . . 4 (𝑦 = 𝑌 → (𝑋 + 𝑦) = (𝑋 + 𝑌))
10 oveq1 7376 . . . 4 (𝑦 = 𝑌 → (𝑦 + 𝑋) = (𝑌 + 𝑋))
119, 10eqeq12d 2745 . . 3 (𝑦 = 𝑌 → ((𝑋 + 𝑦) = (𝑦 + 𝑋) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋)))
1211rspccva 3584 . 2 ((∀𝑦𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋) ∧ 𝑌𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
138, 12sylan 580 1 ((𝑋 ∈ (𝑍𝑆) ∧ 𝑌𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  wss 3911  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  Cntzccntz 19229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-cntz 19231
This theorem is referenced by:  cntri  19246  cntzsgrpcl  19248  cntz2ss  19249  cntzsubm  19252  cntzsubg  19253  cntzmhm  19255  cntrsubgnsg  19257  lsmsubm  19567  lsmsubg  19568  lsmcom2  19569  subgdisj1  19605  subgdisj2  19606  pj1id  19613  pj1ghm  19617  gsumval3eu  19818  gsumval3  19821  gsumzaddlem  19835  gsumzoppg  19858  dprdfcntz  19931  cntzsubrng  20487  cntzsubr  20526  cntzsdrg  20722
  Copyright terms: Public domain W3C validator