| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntzi | Structured version Visualization version GIF version | ||
| Description: Membership in a centralizer (inference). (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| Ref | Expression |
|---|---|
| cntzi.p | ⊢ + = (+g‘𝑀) |
| cntzi.z | ⊢ 𝑍 = (Cntz‘𝑀) |
| Ref | Expression |
|---|---|
| cntzi | ⊢ ((𝑋 ∈ (𝑍‘𝑆) ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 2 | cntzi.z | . . . . . 6 ⊢ 𝑍 = (Cntz‘𝑀) | |
| 3 | 1, 2 | cntzrcl 19241 | . . . . 5 ⊢ (𝑋 ∈ (𝑍‘𝑆) → (𝑀 ∈ V ∧ 𝑆 ⊆ (Base‘𝑀))) |
| 4 | cntzi.p | . . . . . 6 ⊢ + = (+g‘𝑀) | |
| 5 | 1, 4, 2 | elcntz 19236 | . . . . 5 ⊢ (𝑆 ⊆ (Base‘𝑀) → (𝑋 ∈ (𝑍‘𝑆) ↔ (𝑋 ∈ (Base‘𝑀) ∧ ∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋)))) |
| 6 | 3, 5 | simpl2im 503 | . . . 4 ⊢ (𝑋 ∈ (𝑍‘𝑆) → (𝑋 ∈ (𝑍‘𝑆) ↔ (𝑋 ∈ (Base‘𝑀) ∧ ∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋)))) |
| 7 | 6 | simplbda 499 | . . 3 ⊢ ((𝑋 ∈ (𝑍‘𝑆) ∧ 𝑋 ∈ (𝑍‘𝑆)) → ∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋)) |
| 8 | 7 | anidms 566 | . 2 ⊢ (𝑋 ∈ (𝑍‘𝑆) → ∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋)) |
| 9 | oveq2 7377 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋 + 𝑦) = (𝑋 + 𝑌)) | |
| 10 | oveq1 7376 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑦 + 𝑋) = (𝑌 + 𝑋)) | |
| 11 | 9, 10 | eqeq12d 2745 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋 + 𝑦) = (𝑦 + 𝑋) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋))) |
| 12 | 11 | rspccva 3584 | . 2 ⊢ ((∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋) ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| 13 | 8, 12 | sylan 580 | 1 ⊢ ((𝑋 ∈ (𝑍‘𝑆) ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ⊆ wss 3911 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 +gcplusg 17196 Cntzccntz 19229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-cntz 19231 |
| This theorem is referenced by: cntri 19246 cntzsgrpcl 19248 cntz2ss 19249 cntzsubm 19252 cntzsubg 19253 cntzmhm 19255 cntrsubgnsg 19257 lsmsubm 19567 lsmsubg 19568 lsmcom2 19569 subgdisj1 19605 subgdisj2 19606 pj1id 19613 pj1ghm 19617 gsumval3eu 19818 gsumval3 19821 gsumzaddlem 19835 gsumzoppg 19858 dprdfcntz 19931 cntzsubrng 20487 cntzsubr 20526 cntzsdrg 20722 |
| Copyright terms: Public domain | W3C validator |