Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cntzi | Structured version Visualization version GIF version |
Description: Membership in a centralizer (inference). (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
cntzi.p | ⊢ + = (+g‘𝑀) |
cntzi.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
cntzi | ⊢ ((𝑋 ∈ (𝑍‘𝑆) ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
2 | cntzi.z | . . . . . 6 ⊢ 𝑍 = (Cntz‘𝑀) | |
3 | 1, 2 | cntzrcl 18992 | . . . . 5 ⊢ (𝑋 ∈ (𝑍‘𝑆) → (𝑀 ∈ V ∧ 𝑆 ⊆ (Base‘𝑀))) |
4 | cntzi.p | . . . . . 6 ⊢ + = (+g‘𝑀) | |
5 | 1, 4, 2 | elcntz 18987 | . . . . 5 ⊢ (𝑆 ⊆ (Base‘𝑀) → (𝑋 ∈ (𝑍‘𝑆) ↔ (𝑋 ∈ (Base‘𝑀) ∧ ∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋)))) |
6 | 3, 5 | simpl2im 504 | . . . 4 ⊢ (𝑋 ∈ (𝑍‘𝑆) → (𝑋 ∈ (𝑍‘𝑆) ↔ (𝑋 ∈ (Base‘𝑀) ∧ ∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋)))) |
7 | 6 | simplbda 500 | . . 3 ⊢ ((𝑋 ∈ (𝑍‘𝑆) ∧ 𝑋 ∈ (𝑍‘𝑆)) → ∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋)) |
8 | 7 | anidms 567 | . 2 ⊢ (𝑋 ∈ (𝑍‘𝑆) → ∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋)) |
9 | oveq2 7316 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋 + 𝑦) = (𝑋 + 𝑌)) | |
10 | oveq1 7315 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑦 + 𝑋) = (𝑌 + 𝑋)) | |
11 | 9, 10 | eqeq12d 2751 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋 + 𝑦) = (𝑦 + 𝑋) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋))) |
12 | 11 | rspccva 3564 | . 2 ⊢ ((∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋) ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
13 | 8, 12 | sylan 580 | 1 ⊢ ((𝑋 ∈ (𝑍‘𝑆) ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1538 ∈ wcel 2103 ∀wral 3060 Vcvv 3436 ⊆ wss 3891 ‘cfv 6458 (class class class)co 7308 Basecbs 16971 +gcplusg 17021 Cntzccntz 18980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1968 ax-7 2008 ax-8 2105 ax-9 2113 ax-10 2134 ax-11 2151 ax-12 2168 ax-ext 2706 ax-rep 5217 ax-sep 5231 ax-nul 5238 ax-pow 5296 ax-pr 5360 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2713 df-cleq 2727 df-clel 2813 df-nfc 2885 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3340 df-rab 3357 df-v 3438 df-sbc 3721 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4844 df-iun 4932 df-br 5081 df-opab 5143 df-mpt 5164 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7311 df-cntz 18982 |
This theorem is referenced by: cntri 18996 cntz2ss 18998 cntzsubm 19001 cntzsubg 19002 cntzmhm 19004 cntrsubgnsg 19006 lsmsubm 19317 lsmsubg 19318 lsmcom2 19319 subgdisj1 19356 subgdisj2 19357 pj1id 19364 pj1ghm 19368 gsumval3eu 19564 gsumval3 19567 gsumzaddlem 19581 gsumzoppg 19604 dprdfcntz 19677 cntzsubr 20120 cntzsdrg 20133 |
Copyright terms: Public domain | W3C validator |