![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntzi | Structured version Visualization version GIF version |
Description: Membership in a centralizer (inference). (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
cntzi.p | ⊢ + = (+g‘𝑀) |
cntzi.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
cntzi | ⊢ ((𝑋 ∈ (𝑍‘𝑆) ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
2 | cntzi.z | . . . . . 6 ⊢ 𝑍 = (Cntz‘𝑀) | |
3 | 1, 2 | cntzrcl 19367 | . . . . 5 ⊢ (𝑋 ∈ (𝑍‘𝑆) → (𝑀 ∈ V ∧ 𝑆 ⊆ (Base‘𝑀))) |
4 | cntzi.p | . . . . . 6 ⊢ + = (+g‘𝑀) | |
5 | 1, 4, 2 | elcntz 19362 | . . . . 5 ⊢ (𝑆 ⊆ (Base‘𝑀) → (𝑋 ∈ (𝑍‘𝑆) ↔ (𝑋 ∈ (Base‘𝑀) ∧ ∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋)))) |
6 | 3, 5 | simpl2im 503 | . . . 4 ⊢ (𝑋 ∈ (𝑍‘𝑆) → (𝑋 ∈ (𝑍‘𝑆) ↔ (𝑋 ∈ (Base‘𝑀) ∧ ∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋)))) |
7 | 6 | simplbda 499 | . . 3 ⊢ ((𝑋 ∈ (𝑍‘𝑆) ∧ 𝑋 ∈ (𝑍‘𝑆)) → ∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋)) |
8 | 7 | anidms 566 | . 2 ⊢ (𝑋 ∈ (𝑍‘𝑆) → ∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋)) |
9 | oveq2 7456 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋 + 𝑦) = (𝑋 + 𝑌)) | |
10 | oveq1 7455 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑦 + 𝑋) = (𝑌 + 𝑋)) | |
11 | 9, 10 | eqeq12d 2756 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋 + 𝑦) = (𝑦 + 𝑋) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋))) |
12 | 11 | rspccva 3634 | . 2 ⊢ ((∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋) ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
13 | 8, 12 | sylan 579 | 1 ⊢ ((𝑋 ∈ (𝑍‘𝑆) ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ⊆ wss 3976 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 Cntzccntz 19355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-cntz 19357 |
This theorem is referenced by: cntri 19372 cntzsgrpcl 19374 cntz2ss 19375 cntzsubm 19378 cntzsubg 19379 cntzmhm 19381 cntrsubgnsg 19383 lsmsubm 19695 lsmsubg 19696 lsmcom2 19697 subgdisj1 19733 subgdisj2 19734 pj1id 19741 pj1ghm 19745 gsumval3eu 19946 gsumval3 19949 gsumzaddlem 19963 gsumzoppg 19986 dprdfcntz 20059 cntzsubrng 20593 cntzsubr 20634 cntzsdrg 20825 |
Copyright terms: Public domain | W3C validator |