MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzi Structured version   Visualization version   GIF version

Theorem cntzi 18451
Description: Membership in a centralizer (inference). (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
cntzi.p + = (+g𝑀)
cntzi.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzi ((𝑋 ∈ (𝑍𝑆) ∧ 𝑌𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋))

Proof of Theorem cntzi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
2 cntzi.z . . . . . 6 𝑍 = (Cntz‘𝑀)
31, 2cntzrcl 18449 . . . . 5 (𝑋 ∈ (𝑍𝑆) → (𝑀 ∈ V ∧ 𝑆 ⊆ (Base‘𝑀)))
4 cntzi.p . . . . . 6 + = (+g𝑀)
51, 4, 2elcntz 18444 . . . . 5 (𝑆 ⊆ (Base‘𝑀) → (𝑋 ∈ (𝑍𝑆) ↔ (𝑋 ∈ (Base‘𝑀) ∧ ∀𝑦𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋))))
63, 5simpl2im 507 . . . 4 (𝑋 ∈ (𝑍𝑆) → (𝑋 ∈ (𝑍𝑆) ↔ (𝑋 ∈ (Base‘𝑀) ∧ ∀𝑦𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋))))
76simplbda 503 . . 3 ((𝑋 ∈ (𝑍𝑆) ∧ 𝑋 ∈ (𝑍𝑆)) → ∀𝑦𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋))
87anidms 570 . 2 (𝑋 ∈ (𝑍𝑆) → ∀𝑦𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋))
9 oveq2 7143 . . . 4 (𝑦 = 𝑌 → (𝑋 + 𝑦) = (𝑋 + 𝑌))
10 oveq1 7142 . . . 4 (𝑦 = 𝑌 → (𝑦 + 𝑋) = (𝑌 + 𝑋))
119, 10eqeq12d 2814 . . 3 (𝑦 = 𝑌 → ((𝑋 + 𝑦) = (𝑦 + 𝑋) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋)))
1211rspccva 3570 . 2 ((∀𝑦𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋) ∧ 𝑌𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
138, 12sylan 583 1 ((𝑋 ∈ (𝑍𝑆) ∧ 𝑌𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  wss 3881  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  Cntzccntz 18437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-cntz 18439
This theorem is referenced by:  cntri  18453  cntz2ss  18455  cntzsubm  18458  cntzsubg  18459  cntzmhm  18461  cntrsubgnsg  18463  lsmsubm  18770  lsmsubg  18771  lsmcom2  18772  subgdisj1  18809  subgdisj2  18810  pj1id  18817  pj1ghm  18821  gsumval3eu  19017  gsumval3  19020  gsumzaddlem  19034  gsumzoppg  19057  dprdfcntz  19130  cntzsubr  19561  cntzsdrg  19574
  Copyright terms: Public domain W3C validator