| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntzi | Structured version Visualization version GIF version | ||
| Description: Membership in a centralizer (inference). (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| Ref | Expression |
|---|---|
| cntzi.p | ⊢ + = (+g‘𝑀) |
| cntzi.z | ⊢ 𝑍 = (Cntz‘𝑀) |
| Ref | Expression |
|---|---|
| cntzi | ⊢ ((𝑋 ∈ (𝑍‘𝑆) ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 2 | cntzi.z | . . . . . 6 ⊢ 𝑍 = (Cntz‘𝑀) | |
| 3 | 1, 2 | cntzrcl 19206 | . . . . 5 ⊢ (𝑋 ∈ (𝑍‘𝑆) → (𝑀 ∈ V ∧ 𝑆 ⊆ (Base‘𝑀))) |
| 4 | cntzi.p | . . . . . 6 ⊢ + = (+g‘𝑀) | |
| 5 | 1, 4, 2 | elcntz 19201 | . . . . 5 ⊢ (𝑆 ⊆ (Base‘𝑀) → (𝑋 ∈ (𝑍‘𝑆) ↔ (𝑋 ∈ (Base‘𝑀) ∧ ∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋)))) |
| 6 | 3, 5 | simpl2im 503 | . . . 4 ⊢ (𝑋 ∈ (𝑍‘𝑆) → (𝑋 ∈ (𝑍‘𝑆) ↔ (𝑋 ∈ (Base‘𝑀) ∧ ∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋)))) |
| 7 | 6 | simplbda 499 | . . 3 ⊢ ((𝑋 ∈ (𝑍‘𝑆) ∧ 𝑋 ∈ (𝑍‘𝑆)) → ∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋)) |
| 8 | 7 | anidms 566 | . 2 ⊢ (𝑋 ∈ (𝑍‘𝑆) → ∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋)) |
| 9 | oveq2 7357 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋 + 𝑦) = (𝑋 + 𝑌)) | |
| 10 | oveq1 7356 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑦 + 𝑋) = (𝑌 + 𝑋)) | |
| 11 | 9, 10 | eqeq12d 2745 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋 + 𝑦) = (𝑦 + 𝑋) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋))) |
| 12 | 11 | rspccva 3576 | . 2 ⊢ ((∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋) ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| 13 | 8, 12 | sylan 580 | 1 ⊢ ((𝑋 ∈ (𝑍‘𝑆) ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3436 ⊆ wss 3903 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 +gcplusg 17161 Cntzccntz 19194 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-cntz 19196 |
| This theorem is referenced by: cntri 19211 cntzsgrpcl 19213 cntz2ss 19214 cntzsubm 19217 cntzsubg 19218 cntzmhm 19220 cntrsubgnsg 19222 lsmsubm 19532 lsmsubg 19533 lsmcom2 19534 subgdisj1 19570 subgdisj2 19571 pj1id 19578 pj1ghm 19582 gsumval3eu 19783 gsumval3 19786 gsumzaddlem 19800 gsumzoppg 19823 dprdfcntz 19896 cntzsubrng 20452 cntzsubr 20491 cntzsdrg 20687 |
| Copyright terms: Public domain | W3C validator |