Step | Hyp | Ref
| Expression |
1 | | grpmnd 18499 |
. . 3
⊢ (𝑀 ∈ Grp → 𝑀 ∈ Mnd) |
2 | | cntzrec.b |
. . . 4
⊢ 𝐵 = (Base‘𝑀) |
3 | | cntzrec.z |
. . . 4
⊢ 𝑍 = (Cntz‘𝑀) |
4 | 2, 3 | cntzsubm 18857 |
. . 3
⊢ ((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ∈ (SubMnd‘𝑀)) |
5 | 1, 4 | sylan 579 |
. 2
⊢ ((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ∈ (SubMnd‘𝑀)) |
6 | | simpll 763 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆)) → 𝑀 ∈ Grp) |
7 | 2, 3 | cntzssv 18849 |
. . . . . . . . . . . . 13
⊢ (𝑍‘𝑆) ⊆ 𝐵 |
8 | | simprl 767 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ (𝑍‘𝑆)) |
9 | 7, 8 | sselid 3915 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ 𝐵) |
10 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(invg‘𝑀) = (invg‘𝑀) |
11 | 2, 10 | grpinvcl 18542 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝑀)‘𝑥) ∈ 𝐵) |
12 | 6, 9, 11 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆)) → ((invg‘𝑀)‘𝑥) ∈ 𝐵) |
13 | | ssel2 3912 |
. . . . . . . . . . . 12
⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝐵) |
14 | 13 | ad2ant2l 742 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ 𝐵) |
15 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(+g‘𝑀) = (+g‘𝑀) |
16 | 2, 15 | grpcl 18500 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ ((invg‘𝑀)‘𝑥) ∈ 𝐵) → (𝑥(+g‘𝑀)((invg‘𝑀)‘𝑥)) ∈ 𝐵) |
17 | 6, 9, 12, 16 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆)) → (𝑥(+g‘𝑀)((invg‘𝑀)‘𝑥)) ∈ 𝐵) |
18 | 2, 15 | grpass 18501 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ Grp ∧
(((invg‘𝑀)‘𝑥) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ (𝑥(+g‘𝑀)((invg‘𝑀)‘𝑥)) ∈ 𝐵)) → ((((invg‘𝑀)‘𝑥)(+g‘𝑀)𝑦)(+g‘𝑀)(𝑥(+g‘𝑀)((invg‘𝑀)‘𝑥))) = (((invg‘𝑀)‘𝑥)(+g‘𝑀)(𝑦(+g‘𝑀)(𝑥(+g‘𝑀)((invg‘𝑀)‘𝑥))))) |
19 | 6, 12, 14, 17, 18 | syl13anc 1370 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆)) → ((((invg‘𝑀)‘𝑥)(+g‘𝑀)𝑦)(+g‘𝑀)(𝑥(+g‘𝑀)((invg‘𝑀)‘𝑥))) = (((invg‘𝑀)‘𝑥)(+g‘𝑀)(𝑦(+g‘𝑀)(𝑥(+g‘𝑀)((invg‘𝑀)‘𝑥))))) |
20 | 2, 15 | grpass 18501 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ Grp ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ ((invg‘𝑀)‘𝑥) ∈ 𝐵)) → ((𝑦(+g‘𝑀)𝑥)(+g‘𝑀)((invg‘𝑀)‘𝑥)) = (𝑦(+g‘𝑀)(𝑥(+g‘𝑀)((invg‘𝑀)‘𝑥)))) |
21 | 6, 14, 9, 12, 20 | syl13anc 1370 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆)) → ((𝑦(+g‘𝑀)𝑥)(+g‘𝑀)((invg‘𝑀)‘𝑥)) = (𝑦(+g‘𝑀)(𝑥(+g‘𝑀)((invg‘𝑀)‘𝑥)))) |
22 | 21 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆)) → (((invg‘𝑀)‘𝑥)(+g‘𝑀)((𝑦(+g‘𝑀)𝑥)(+g‘𝑀)((invg‘𝑀)‘𝑥))) = (((invg‘𝑀)‘𝑥)(+g‘𝑀)(𝑦(+g‘𝑀)(𝑥(+g‘𝑀)((invg‘𝑀)‘𝑥))))) |
23 | 19, 22 | eqtr4d 2781 |
. . . . . . . . 9
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆)) → ((((invg‘𝑀)‘𝑥)(+g‘𝑀)𝑦)(+g‘𝑀)(𝑥(+g‘𝑀)((invg‘𝑀)‘𝑥))) = (((invg‘𝑀)‘𝑥)(+g‘𝑀)((𝑦(+g‘𝑀)𝑥)(+g‘𝑀)((invg‘𝑀)‘𝑥)))) |
24 | 15, 3 | cntzi 18850 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆) → (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)) |
25 | 24 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆)) → (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)) |
26 | 25 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆)) → ((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)((invg‘𝑀)‘𝑥)) = ((𝑦(+g‘𝑀)𝑥)(+g‘𝑀)((invg‘𝑀)‘𝑥))) |
27 | 26 | oveq2d 7271 |
. . . . . . . . 9
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆)) → (((invg‘𝑀)‘𝑥)(+g‘𝑀)((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)((invg‘𝑀)‘𝑥))) = (((invg‘𝑀)‘𝑥)(+g‘𝑀)((𝑦(+g‘𝑀)𝑥)(+g‘𝑀)((invg‘𝑀)‘𝑥)))) |
28 | 23, 27 | eqtr4d 2781 |
. . . . . . . 8
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆)) → ((((invg‘𝑀)‘𝑥)(+g‘𝑀)𝑦)(+g‘𝑀)(𝑥(+g‘𝑀)((invg‘𝑀)‘𝑥))) = (((invg‘𝑀)‘𝑥)(+g‘𝑀)((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)((invg‘𝑀)‘𝑥)))) |
29 | 2, 15 | grpcl 18500 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ ((invg‘𝑀)‘𝑥) ∈ 𝐵) → (𝑦(+g‘𝑀)((invg‘𝑀)‘𝑥)) ∈ 𝐵) |
30 | 6, 14, 12, 29 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆)) → (𝑦(+g‘𝑀)((invg‘𝑀)‘𝑥)) ∈ 𝐵) |
31 | 2, 15 | grpass 18501 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ Grp ∧
(((invg‘𝑀)‘𝑥) ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ (𝑦(+g‘𝑀)((invg‘𝑀)‘𝑥)) ∈ 𝐵)) → ((((invg‘𝑀)‘𝑥)(+g‘𝑀)𝑥)(+g‘𝑀)(𝑦(+g‘𝑀)((invg‘𝑀)‘𝑥))) = (((invg‘𝑀)‘𝑥)(+g‘𝑀)(𝑥(+g‘𝑀)(𝑦(+g‘𝑀)((invg‘𝑀)‘𝑥))))) |
32 | 6, 12, 9, 30, 31 | syl13anc 1370 |
. . . . . . . . 9
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆)) → ((((invg‘𝑀)‘𝑥)(+g‘𝑀)𝑥)(+g‘𝑀)(𝑦(+g‘𝑀)((invg‘𝑀)‘𝑥))) = (((invg‘𝑀)‘𝑥)(+g‘𝑀)(𝑥(+g‘𝑀)(𝑦(+g‘𝑀)((invg‘𝑀)‘𝑥))))) |
33 | 2, 15 | grpass 18501 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ Grp ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ ((invg‘𝑀)‘𝑥) ∈ 𝐵)) → ((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)((invg‘𝑀)‘𝑥)) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)((invg‘𝑀)‘𝑥)))) |
34 | 6, 9, 14, 12, 33 | syl13anc 1370 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆)) → ((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)((invg‘𝑀)‘𝑥)) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)((invg‘𝑀)‘𝑥)))) |
35 | 34 | oveq2d 7271 |
. . . . . . . . 9
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆)) → (((invg‘𝑀)‘𝑥)(+g‘𝑀)((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)((invg‘𝑀)‘𝑥))) = (((invg‘𝑀)‘𝑥)(+g‘𝑀)(𝑥(+g‘𝑀)(𝑦(+g‘𝑀)((invg‘𝑀)‘𝑥))))) |
36 | 32, 35 | eqtr4d 2781 |
. . . . . . . 8
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆)) → ((((invg‘𝑀)‘𝑥)(+g‘𝑀)𝑥)(+g‘𝑀)(𝑦(+g‘𝑀)((invg‘𝑀)‘𝑥))) = (((invg‘𝑀)‘𝑥)(+g‘𝑀)((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)((invg‘𝑀)‘𝑥)))) |
37 | 28, 36 | eqtr4d 2781 |
. . . . . . 7
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆)) → ((((invg‘𝑀)‘𝑥)(+g‘𝑀)𝑦)(+g‘𝑀)(𝑥(+g‘𝑀)((invg‘𝑀)‘𝑥))) = ((((invg‘𝑀)‘𝑥)(+g‘𝑀)𝑥)(+g‘𝑀)(𝑦(+g‘𝑀)((invg‘𝑀)‘𝑥)))) |
38 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(0g‘𝑀) = (0g‘𝑀) |
39 | 2, 15, 38, 10 | grprinv 18544 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝑀)((invg‘𝑀)‘𝑥)) = (0g‘𝑀)) |
40 | 6, 9, 39 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆)) → (𝑥(+g‘𝑀)((invg‘𝑀)‘𝑥)) = (0g‘𝑀)) |
41 | 40 | oveq2d 7271 |
. . . . . . . 8
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆)) → ((((invg‘𝑀)‘𝑥)(+g‘𝑀)𝑦)(+g‘𝑀)(𝑥(+g‘𝑀)((invg‘𝑀)‘𝑥))) = ((((invg‘𝑀)‘𝑥)(+g‘𝑀)𝑦)(+g‘𝑀)(0g‘𝑀))) |
42 | 2, 15 | grpcl 18500 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ Grp ∧
((invg‘𝑀)‘𝑥) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (((invg‘𝑀)‘𝑥)(+g‘𝑀)𝑦) ∈ 𝐵) |
43 | 6, 12, 14, 42 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆)) → (((invg‘𝑀)‘𝑥)(+g‘𝑀)𝑦) ∈ 𝐵) |
44 | 2, 15, 38 | grprid 18525 |
. . . . . . . . 9
⊢ ((𝑀 ∈ Grp ∧
(((invg‘𝑀)‘𝑥)(+g‘𝑀)𝑦) ∈ 𝐵) → ((((invg‘𝑀)‘𝑥)(+g‘𝑀)𝑦)(+g‘𝑀)(0g‘𝑀)) = (((invg‘𝑀)‘𝑥)(+g‘𝑀)𝑦)) |
45 | 6, 43, 44 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆)) → ((((invg‘𝑀)‘𝑥)(+g‘𝑀)𝑦)(+g‘𝑀)(0g‘𝑀)) = (((invg‘𝑀)‘𝑥)(+g‘𝑀)𝑦)) |
46 | 41, 45 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆)) → ((((invg‘𝑀)‘𝑥)(+g‘𝑀)𝑦)(+g‘𝑀)(𝑥(+g‘𝑀)((invg‘𝑀)‘𝑥))) = (((invg‘𝑀)‘𝑥)(+g‘𝑀)𝑦)) |
47 | 2, 15, 38, 10 | grplinv 18543 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (((invg‘𝑀)‘𝑥)(+g‘𝑀)𝑥) = (0g‘𝑀)) |
48 | 6, 9, 47 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆)) → (((invg‘𝑀)‘𝑥)(+g‘𝑀)𝑥) = (0g‘𝑀)) |
49 | 48 | oveq1d 7270 |
. . . . . . . 8
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆)) → ((((invg‘𝑀)‘𝑥)(+g‘𝑀)𝑥)(+g‘𝑀)(𝑦(+g‘𝑀)((invg‘𝑀)‘𝑥))) = ((0g‘𝑀)(+g‘𝑀)(𝑦(+g‘𝑀)((invg‘𝑀)‘𝑥)))) |
50 | 2, 15, 38 | grplid 18524 |
. . . . . . . . 9
⊢ ((𝑀 ∈ Grp ∧ (𝑦(+g‘𝑀)((invg‘𝑀)‘𝑥)) ∈ 𝐵) → ((0g‘𝑀)(+g‘𝑀)(𝑦(+g‘𝑀)((invg‘𝑀)‘𝑥))) = (𝑦(+g‘𝑀)((invg‘𝑀)‘𝑥))) |
51 | 6, 30, 50 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆)) → ((0g‘𝑀)(+g‘𝑀)(𝑦(+g‘𝑀)((invg‘𝑀)‘𝑥))) = (𝑦(+g‘𝑀)((invg‘𝑀)‘𝑥))) |
52 | 49, 51 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆)) → ((((invg‘𝑀)‘𝑥)(+g‘𝑀)𝑥)(+g‘𝑀)(𝑦(+g‘𝑀)((invg‘𝑀)‘𝑥))) = (𝑦(+g‘𝑀)((invg‘𝑀)‘𝑥))) |
53 | 37, 46, 52 | 3eqtr3d 2786 |
. . . . . 6
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ 𝑆)) → (((invg‘𝑀)‘𝑥)(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)((invg‘𝑀)‘𝑥))) |
54 | 53 | anassrs 467 |
. . . . 5
⊢ ((((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆)) ∧ 𝑦 ∈ 𝑆) → (((invg‘𝑀)‘𝑥)(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)((invg‘𝑀)‘𝑥))) |
55 | 54 | ralrimiva 3107 |
. . . 4
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆)) → ∀𝑦 ∈ 𝑆 (((invg‘𝑀)‘𝑥)(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)((invg‘𝑀)‘𝑥))) |
56 | | simplr 765 |
. . . . 5
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆)) → 𝑆 ⊆ 𝐵) |
57 | | simpll 763 |
. . . . . 6
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆)) → 𝑀 ∈ Grp) |
58 | | simpr 484 |
. . . . . . 7
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆)) → 𝑥 ∈ (𝑍‘𝑆)) |
59 | 7, 58 | sselid 3915 |
. . . . . 6
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆)) → 𝑥 ∈ 𝐵) |
60 | 57, 59, 11 | syl2anc 583 |
. . . . 5
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆)) → ((invg‘𝑀)‘𝑥) ∈ 𝐵) |
61 | 2, 15, 3 | cntzel 18844 |
. . . . 5
⊢ ((𝑆 ⊆ 𝐵 ∧ ((invg‘𝑀)‘𝑥) ∈ 𝐵) → (((invg‘𝑀)‘𝑥) ∈ (𝑍‘𝑆) ↔ ∀𝑦 ∈ 𝑆 (((invg‘𝑀)‘𝑥)(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)((invg‘𝑀)‘𝑥)))) |
62 | 56, 60, 61 | syl2anc 583 |
. . . 4
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆)) → (((invg‘𝑀)‘𝑥) ∈ (𝑍‘𝑆) ↔ ∀𝑦 ∈ 𝑆 (((invg‘𝑀)‘𝑥)(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)((invg‘𝑀)‘𝑥)))) |
63 | 55, 62 | mpbird 256 |
. . 3
⊢ (((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆)) → ((invg‘𝑀)‘𝑥) ∈ (𝑍‘𝑆)) |
64 | 63 | ralrimiva 3107 |
. 2
⊢ ((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → ∀𝑥 ∈ (𝑍‘𝑆)((invg‘𝑀)‘𝑥) ∈ (𝑍‘𝑆)) |
65 | 10 | issubg3 18688 |
. . 3
⊢ (𝑀 ∈ Grp → ((𝑍‘𝑆) ∈ (SubGrp‘𝑀) ↔ ((𝑍‘𝑆) ∈ (SubMnd‘𝑀) ∧ ∀𝑥 ∈ (𝑍‘𝑆)((invg‘𝑀)‘𝑥) ∈ (𝑍‘𝑆)))) |
66 | 65 | adantr 480 |
. 2
⊢ ((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → ((𝑍‘𝑆) ∈ (SubGrp‘𝑀) ↔ ((𝑍‘𝑆) ∈ (SubMnd‘𝑀) ∧ ∀𝑥 ∈ (𝑍‘𝑆)((invg‘𝑀)‘𝑥) ∈ (𝑍‘𝑆)))) |
67 | 5, 64, 66 | mpbir2and 709 |
1
⊢ ((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ∈ (SubGrp‘𝑀)) |