MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzsubg Structured version   Visualization version   GIF version

Theorem cntzsubg 18943
Description: Centralizers in a group are subgroups. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
cntzrec.b 𝐵 = (Base‘𝑀)
cntzrec.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzsubg ((𝑀 ∈ Grp ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubGrp‘𝑀))

Proof of Theorem cntzsubg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpmnd 18584 . . 3 (𝑀 ∈ Grp → 𝑀 ∈ Mnd)
2 cntzrec.b . . . 4 𝐵 = (Base‘𝑀)
3 cntzrec.z . . . 4 𝑍 = (Cntz‘𝑀)
42, 3cntzsubm 18942 . . 3 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubMnd‘𝑀))
51, 4sylan 580 . 2 ((𝑀 ∈ Grp ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubMnd‘𝑀))
6 simpll 764 . . . . . . . . . . 11 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → 𝑀 ∈ Grp)
72, 3cntzssv 18934 . . . . . . . . . . . . 13 (𝑍𝑆) ⊆ 𝐵
8 simprl 768 . . . . . . . . . . . . 13 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → 𝑥 ∈ (𝑍𝑆))
97, 8sselid 3919 . . . . . . . . . . . 12 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → 𝑥𝐵)
10 eqid 2738 . . . . . . . . . . . . 13 (invg𝑀) = (invg𝑀)
112, 10grpinvcl 18627 . . . . . . . . . . . 12 ((𝑀 ∈ Grp ∧ 𝑥𝐵) → ((invg𝑀)‘𝑥) ∈ 𝐵)
126, 9, 11syl2anc 584 . . . . . . . . . . 11 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((invg𝑀)‘𝑥) ∈ 𝐵)
13 ssel2 3916 . . . . . . . . . . . 12 ((𝑆𝐵𝑦𝑆) → 𝑦𝐵)
1413ad2ant2l 743 . . . . . . . . . . 11 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → 𝑦𝐵)
15 eqid 2738 . . . . . . . . . . . . 13 (+g𝑀) = (+g𝑀)
162, 15grpcl 18585 . . . . . . . . . . . 12 ((𝑀 ∈ Grp ∧ 𝑥𝐵 ∧ ((invg𝑀)‘𝑥) ∈ 𝐵) → (𝑥(+g𝑀)((invg𝑀)‘𝑥)) ∈ 𝐵)
176, 9, 12, 16syl3anc 1370 . . . . . . . . . . 11 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → (𝑥(+g𝑀)((invg𝑀)‘𝑥)) ∈ 𝐵)
182, 15grpass 18586 . . . . . . . . . . 11 ((𝑀 ∈ Grp ∧ (((invg𝑀)‘𝑥) ∈ 𝐵𝑦𝐵 ∧ (𝑥(+g𝑀)((invg𝑀)‘𝑥)) ∈ 𝐵)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑦)(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)(𝑦(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥)))))
196, 12, 14, 17, 18syl13anc 1371 . . . . . . . . . 10 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑦)(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)(𝑦(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥)))))
202, 15grpass 18586 . . . . . . . . . . . 12 ((𝑀 ∈ Grp ∧ (𝑦𝐵𝑥𝐵 ∧ ((invg𝑀)‘𝑥) ∈ 𝐵)) → ((𝑦(+g𝑀)𝑥)(+g𝑀)((invg𝑀)‘𝑥)) = (𝑦(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥))))
216, 14, 9, 12, 20syl13anc 1371 . . . . . . . . . . 11 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((𝑦(+g𝑀)𝑥)(+g𝑀)((invg𝑀)‘𝑥)) = (𝑦(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥))))
2221oveq2d 7291 . . . . . . . . . 10 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → (((invg𝑀)‘𝑥)(+g𝑀)((𝑦(+g𝑀)𝑥)(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)(𝑦(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥)))))
2319, 22eqtr4d 2781 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑦)(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)((𝑦(+g𝑀)𝑥)(+g𝑀)((invg𝑀)‘𝑥))))
2415, 3cntzi 18935 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆) → (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))
2524adantl 482 . . . . . . . . . . 11 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))
2625oveq1d 7290 . . . . . . . . . 10 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((𝑥(+g𝑀)𝑦)(+g𝑀)((invg𝑀)‘𝑥)) = ((𝑦(+g𝑀)𝑥)(+g𝑀)((invg𝑀)‘𝑥)))
2726oveq2d 7291 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → (((invg𝑀)‘𝑥)(+g𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)((𝑦(+g𝑀)𝑥)(+g𝑀)((invg𝑀)‘𝑥))))
2823, 27eqtr4d 2781 . . . . . . . 8 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑦)(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)((invg𝑀)‘𝑥))))
292, 15grpcl 18585 . . . . . . . . . . 11 ((𝑀 ∈ Grp ∧ 𝑦𝐵 ∧ ((invg𝑀)‘𝑥) ∈ 𝐵) → (𝑦(+g𝑀)((invg𝑀)‘𝑥)) ∈ 𝐵)
306, 14, 12, 29syl3anc 1370 . . . . . . . . . 10 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → (𝑦(+g𝑀)((invg𝑀)‘𝑥)) ∈ 𝐵)
312, 15grpass 18586 . . . . . . . . . 10 ((𝑀 ∈ Grp ∧ (((invg𝑀)‘𝑥) ∈ 𝐵𝑥𝐵 ∧ (𝑦(+g𝑀)((invg𝑀)‘𝑥)) ∈ 𝐵)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑥)(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)(𝑥(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥)))))
326, 12, 9, 30, 31syl13anc 1371 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑥)(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)(𝑥(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥)))))
332, 15grpass 18586 . . . . . . . . . . 11 ((𝑀 ∈ Grp ∧ (𝑥𝐵𝑦𝐵 ∧ ((invg𝑀)‘𝑥) ∈ 𝐵)) → ((𝑥(+g𝑀)𝑦)(+g𝑀)((invg𝑀)‘𝑥)) = (𝑥(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))))
346, 9, 14, 12, 33syl13anc 1371 . . . . . . . . . 10 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((𝑥(+g𝑀)𝑦)(+g𝑀)((invg𝑀)‘𝑥)) = (𝑥(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))))
3534oveq2d 7291 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → (((invg𝑀)‘𝑥)(+g𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)(𝑥(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥)))))
3632, 35eqtr4d 2781 . . . . . . . 8 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑥)(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)((invg𝑀)‘𝑥))))
3728, 36eqtr4d 2781 . . . . . . 7 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑦)(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥))) = ((((invg𝑀)‘𝑥)(+g𝑀)𝑥)(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))))
38 eqid 2738 . . . . . . . . . . 11 (0g𝑀) = (0g𝑀)
392, 15, 38, 10grprinv 18629 . . . . . . . . . 10 ((𝑀 ∈ Grp ∧ 𝑥𝐵) → (𝑥(+g𝑀)((invg𝑀)‘𝑥)) = (0g𝑀))
406, 9, 39syl2anc 584 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → (𝑥(+g𝑀)((invg𝑀)‘𝑥)) = (0g𝑀))
4140oveq2d 7291 . . . . . . . 8 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑦)(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥))) = ((((invg𝑀)‘𝑥)(+g𝑀)𝑦)(+g𝑀)(0g𝑀)))
422, 15grpcl 18585 . . . . . . . . . 10 ((𝑀 ∈ Grp ∧ ((invg𝑀)‘𝑥) ∈ 𝐵𝑦𝐵) → (((invg𝑀)‘𝑥)(+g𝑀)𝑦) ∈ 𝐵)
436, 12, 14, 42syl3anc 1370 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → (((invg𝑀)‘𝑥)(+g𝑀)𝑦) ∈ 𝐵)
442, 15, 38grprid 18610 . . . . . . . . 9 ((𝑀 ∈ Grp ∧ (((invg𝑀)‘𝑥)(+g𝑀)𝑦) ∈ 𝐵) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑦)(+g𝑀)(0g𝑀)) = (((invg𝑀)‘𝑥)(+g𝑀)𝑦))
456, 43, 44syl2anc 584 . . . . . . . 8 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑦)(+g𝑀)(0g𝑀)) = (((invg𝑀)‘𝑥)(+g𝑀)𝑦))
4641, 45eqtrd 2778 . . . . . . 7 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑦)(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)𝑦))
472, 15, 38, 10grplinv 18628 . . . . . . . . . 10 ((𝑀 ∈ Grp ∧ 𝑥𝐵) → (((invg𝑀)‘𝑥)(+g𝑀)𝑥) = (0g𝑀))
486, 9, 47syl2anc 584 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → (((invg𝑀)‘𝑥)(+g𝑀)𝑥) = (0g𝑀))
4948oveq1d 7290 . . . . . . . 8 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑥)(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))) = ((0g𝑀)(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))))
502, 15, 38grplid 18609 . . . . . . . . 9 ((𝑀 ∈ Grp ∧ (𝑦(+g𝑀)((invg𝑀)‘𝑥)) ∈ 𝐵) → ((0g𝑀)(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))) = (𝑦(+g𝑀)((invg𝑀)‘𝑥)))
516, 30, 50syl2anc 584 . . . . . . . 8 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((0g𝑀)(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))) = (𝑦(+g𝑀)((invg𝑀)‘𝑥)))
5249, 51eqtrd 2778 . . . . . . 7 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑥)(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))) = (𝑦(+g𝑀)((invg𝑀)‘𝑥)))
5337, 46, 523eqtr3d 2786 . . . . . 6 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → (((invg𝑀)‘𝑥)(+g𝑀)𝑦) = (𝑦(+g𝑀)((invg𝑀)‘𝑥)))
5453anassrs 468 . . . . 5 ((((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑦𝑆) → (((invg𝑀)‘𝑥)(+g𝑀)𝑦) = (𝑦(+g𝑀)((invg𝑀)‘𝑥)))
5554ralrimiva 3103 . . . 4 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ∀𝑦𝑆 (((invg𝑀)‘𝑥)(+g𝑀)𝑦) = (𝑦(+g𝑀)((invg𝑀)‘𝑥)))
56 simplr 766 . . . . 5 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑆𝐵)
57 simpll 764 . . . . . 6 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑀 ∈ Grp)
58 simpr 485 . . . . . . 7 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑥 ∈ (𝑍𝑆))
597, 58sselid 3919 . . . . . 6 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑥𝐵)
6057, 59, 11syl2anc 584 . . . . 5 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ((invg𝑀)‘𝑥) ∈ 𝐵)
612, 15, 3cntzel 18929 . . . . 5 ((𝑆𝐵 ∧ ((invg𝑀)‘𝑥) ∈ 𝐵) → (((invg𝑀)‘𝑥) ∈ (𝑍𝑆) ↔ ∀𝑦𝑆 (((invg𝑀)‘𝑥)(+g𝑀)𝑦) = (𝑦(+g𝑀)((invg𝑀)‘𝑥))))
6256, 60, 61syl2anc 584 . . . 4 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → (((invg𝑀)‘𝑥) ∈ (𝑍𝑆) ↔ ∀𝑦𝑆 (((invg𝑀)‘𝑥)(+g𝑀)𝑦) = (𝑦(+g𝑀)((invg𝑀)‘𝑥))))
6355, 62mpbird 256 . . 3 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ((invg𝑀)‘𝑥) ∈ (𝑍𝑆))
6463ralrimiva 3103 . 2 ((𝑀 ∈ Grp ∧ 𝑆𝐵) → ∀𝑥 ∈ (𝑍𝑆)((invg𝑀)‘𝑥) ∈ (𝑍𝑆))
6510issubg3 18773 . . 3 (𝑀 ∈ Grp → ((𝑍𝑆) ∈ (SubGrp‘𝑀) ↔ ((𝑍𝑆) ∈ (SubMnd‘𝑀) ∧ ∀𝑥 ∈ (𝑍𝑆)((invg𝑀)‘𝑥) ∈ (𝑍𝑆))))
6665adantr 481 . 2 ((𝑀 ∈ Grp ∧ 𝑆𝐵) → ((𝑍𝑆) ∈ (SubGrp‘𝑀) ↔ ((𝑍𝑆) ∈ (SubMnd‘𝑀) ∧ ∀𝑥 ∈ (𝑍𝑆)((invg𝑀)‘𝑥) ∈ (𝑍𝑆))))
675, 64, 66mpbir2and 710 1 ((𝑀 ∈ Grp ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubGrp‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wss 3887  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  0gc0g 17150  Mndcmnd 18385  SubMndcsubmnd 18429  Grpcgrp 18577  invgcminusg 18578  SubGrpcsubg 18749  Cntzccntz 18921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-subg 18752  df-cntz 18923
This theorem is referenced by:  cntrnsg  18948  lsmcntz  19285  cntrabl  19444  dprdz  19633  dprdcntz2  19641  dmdprdsplit2lem  19648  cntzsdrg  20070
  Copyright terms: Public domain W3C validator