MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzsubg Structured version   Visualization version   GIF version

Theorem cntzsubg 19327
Description: Centralizers in a group are subgroups. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
cntzrec.b 𝐵 = (Base‘𝑀)
cntzrec.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzsubg ((𝑀 ∈ Grp ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubGrp‘𝑀))

Proof of Theorem cntzsubg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpmnd 18928 . . 3 (𝑀 ∈ Grp → 𝑀 ∈ Mnd)
2 cntzrec.b . . . 4 𝐵 = (Base‘𝑀)
3 cntzrec.z . . . 4 𝑍 = (Cntz‘𝑀)
42, 3cntzsubm 19326 . . 3 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubMnd‘𝑀))
51, 4sylan 580 . 2 ((𝑀 ∈ Grp ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubMnd‘𝑀))
6 simpll 766 . . . . . . . . . . 11 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → 𝑀 ∈ Grp)
72, 3cntzssv 19316 . . . . . . . . . . . . 13 (𝑍𝑆) ⊆ 𝐵
8 simprl 770 . . . . . . . . . . . . 13 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → 𝑥 ∈ (𝑍𝑆))
97, 8sselid 3961 . . . . . . . . . . . 12 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → 𝑥𝐵)
10 eqid 2736 . . . . . . . . . . . . 13 (invg𝑀) = (invg𝑀)
112, 10grpinvcl 18975 . . . . . . . . . . . 12 ((𝑀 ∈ Grp ∧ 𝑥𝐵) → ((invg𝑀)‘𝑥) ∈ 𝐵)
126, 9, 11syl2anc 584 . . . . . . . . . . 11 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((invg𝑀)‘𝑥) ∈ 𝐵)
13 ssel2 3958 . . . . . . . . . . . 12 ((𝑆𝐵𝑦𝑆) → 𝑦𝐵)
1413ad2ant2l 746 . . . . . . . . . . 11 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → 𝑦𝐵)
15 eqid 2736 . . . . . . . . . . . . 13 (+g𝑀) = (+g𝑀)
162, 15grpcl 18929 . . . . . . . . . . . 12 ((𝑀 ∈ Grp ∧ 𝑥𝐵 ∧ ((invg𝑀)‘𝑥) ∈ 𝐵) → (𝑥(+g𝑀)((invg𝑀)‘𝑥)) ∈ 𝐵)
176, 9, 12, 16syl3anc 1373 . . . . . . . . . . 11 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → (𝑥(+g𝑀)((invg𝑀)‘𝑥)) ∈ 𝐵)
182, 15grpass 18930 . . . . . . . . . . 11 ((𝑀 ∈ Grp ∧ (((invg𝑀)‘𝑥) ∈ 𝐵𝑦𝐵 ∧ (𝑥(+g𝑀)((invg𝑀)‘𝑥)) ∈ 𝐵)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑦)(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)(𝑦(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥)))))
196, 12, 14, 17, 18syl13anc 1374 . . . . . . . . . 10 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑦)(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)(𝑦(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥)))))
202, 15grpass 18930 . . . . . . . . . . . 12 ((𝑀 ∈ Grp ∧ (𝑦𝐵𝑥𝐵 ∧ ((invg𝑀)‘𝑥) ∈ 𝐵)) → ((𝑦(+g𝑀)𝑥)(+g𝑀)((invg𝑀)‘𝑥)) = (𝑦(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥))))
216, 14, 9, 12, 20syl13anc 1374 . . . . . . . . . . 11 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((𝑦(+g𝑀)𝑥)(+g𝑀)((invg𝑀)‘𝑥)) = (𝑦(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥))))
2221oveq2d 7426 . . . . . . . . . 10 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → (((invg𝑀)‘𝑥)(+g𝑀)((𝑦(+g𝑀)𝑥)(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)(𝑦(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥)))))
2319, 22eqtr4d 2774 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑦)(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)((𝑦(+g𝑀)𝑥)(+g𝑀)((invg𝑀)‘𝑥))))
2415, 3cntzi 19317 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆) → (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))
2524adantl 481 . . . . . . . . . . 11 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))
2625oveq1d 7425 . . . . . . . . . 10 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((𝑥(+g𝑀)𝑦)(+g𝑀)((invg𝑀)‘𝑥)) = ((𝑦(+g𝑀)𝑥)(+g𝑀)((invg𝑀)‘𝑥)))
2726oveq2d 7426 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → (((invg𝑀)‘𝑥)(+g𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)((𝑦(+g𝑀)𝑥)(+g𝑀)((invg𝑀)‘𝑥))))
2823, 27eqtr4d 2774 . . . . . . . 8 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑦)(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)((invg𝑀)‘𝑥))))
292, 15grpcl 18929 . . . . . . . . . . 11 ((𝑀 ∈ Grp ∧ 𝑦𝐵 ∧ ((invg𝑀)‘𝑥) ∈ 𝐵) → (𝑦(+g𝑀)((invg𝑀)‘𝑥)) ∈ 𝐵)
306, 14, 12, 29syl3anc 1373 . . . . . . . . . 10 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → (𝑦(+g𝑀)((invg𝑀)‘𝑥)) ∈ 𝐵)
312, 15grpass 18930 . . . . . . . . . 10 ((𝑀 ∈ Grp ∧ (((invg𝑀)‘𝑥) ∈ 𝐵𝑥𝐵 ∧ (𝑦(+g𝑀)((invg𝑀)‘𝑥)) ∈ 𝐵)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑥)(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)(𝑥(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥)))))
326, 12, 9, 30, 31syl13anc 1374 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑥)(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)(𝑥(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥)))))
332, 15grpass 18930 . . . . . . . . . . 11 ((𝑀 ∈ Grp ∧ (𝑥𝐵𝑦𝐵 ∧ ((invg𝑀)‘𝑥) ∈ 𝐵)) → ((𝑥(+g𝑀)𝑦)(+g𝑀)((invg𝑀)‘𝑥)) = (𝑥(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))))
346, 9, 14, 12, 33syl13anc 1374 . . . . . . . . . 10 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((𝑥(+g𝑀)𝑦)(+g𝑀)((invg𝑀)‘𝑥)) = (𝑥(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))))
3534oveq2d 7426 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → (((invg𝑀)‘𝑥)(+g𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)(𝑥(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥)))))
3632, 35eqtr4d 2774 . . . . . . . 8 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑥)(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)((invg𝑀)‘𝑥))))
3728, 36eqtr4d 2774 . . . . . . 7 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑦)(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥))) = ((((invg𝑀)‘𝑥)(+g𝑀)𝑥)(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))))
38 eqid 2736 . . . . . . . . . . 11 (0g𝑀) = (0g𝑀)
392, 15, 38, 10grprinv 18978 . . . . . . . . . 10 ((𝑀 ∈ Grp ∧ 𝑥𝐵) → (𝑥(+g𝑀)((invg𝑀)‘𝑥)) = (0g𝑀))
406, 9, 39syl2anc 584 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → (𝑥(+g𝑀)((invg𝑀)‘𝑥)) = (0g𝑀))
4140oveq2d 7426 . . . . . . . 8 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑦)(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥))) = ((((invg𝑀)‘𝑥)(+g𝑀)𝑦)(+g𝑀)(0g𝑀)))
422, 15grpcl 18929 . . . . . . . . . 10 ((𝑀 ∈ Grp ∧ ((invg𝑀)‘𝑥) ∈ 𝐵𝑦𝐵) → (((invg𝑀)‘𝑥)(+g𝑀)𝑦) ∈ 𝐵)
436, 12, 14, 42syl3anc 1373 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → (((invg𝑀)‘𝑥)(+g𝑀)𝑦) ∈ 𝐵)
442, 15, 38grprid 18956 . . . . . . . . 9 ((𝑀 ∈ Grp ∧ (((invg𝑀)‘𝑥)(+g𝑀)𝑦) ∈ 𝐵) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑦)(+g𝑀)(0g𝑀)) = (((invg𝑀)‘𝑥)(+g𝑀)𝑦))
456, 43, 44syl2anc 584 . . . . . . . 8 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑦)(+g𝑀)(0g𝑀)) = (((invg𝑀)‘𝑥)(+g𝑀)𝑦))
4641, 45eqtrd 2771 . . . . . . 7 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑦)(+g𝑀)(𝑥(+g𝑀)((invg𝑀)‘𝑥))) = (((invg𝑀)‘𝑥)(+g𝑀)𝑦))
472, 15, 38, 10grplinv 18977 . . . . . . . . . 10 ((𝑀 ∈ Grp ∧ 𝑥𝐵) → (((invg𝑀)‘𝑥)(+g𝑀)𝑥) = (0g𝑀))
486, 9, 47syl2anc 584 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → (((invg𝑀)‘𝑥)(+g𝑀)𝑥) = (0g𝑀))
4948oveq1d 7425 . . . . . . . 8 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑥)(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))) = ((0g𝑀)(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))))
502, 15, 38grplid 18955 . . . . . . . . 9 ((𝑀 ∈ Grp ∧ (𝑦(+g𝑀)((invg𝑀)‘𝑥)) ∈ 𝐵) → ((0g𝑀)(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))) = (𝑦(+g𝑀)((invg𝑀)‘𝑥)))
516, 30, 50syl2anc 584 . . . . . . . 8 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((0g𝑀)(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))) = (𝑦(+g𝑀)((invg𝑀)‘𝑥)))
5249, 51eqtrd 2771 . . . . . . 7 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → ((((invg𝑀)‘𝑥)(+g𝑀)𝑥)(+g𝑀)(𝑦(+g𝑀)((invg𝑀)‘𝑥))) = (𝑦(+g𝑀)((invg𝑀)‘𝑥)))
5337, 46, 523eqtr3d 2779 . . . . . 6 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ (𝑥 ∈ (𝑍𝑆) ∧ 𝑦𝑆)) → (((invg𝑀)‘𝑥)(+g𝑀)𝑦) = (𝑦(+g𝑀)((invg𝑀)‘𝑥)))
5453anassrs 467 . . . . 5 ((((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑦𝑆) → (((invg𝑀)‘𝑥)(+g𝑀)𝑦) = (𝑦(+g𝑀)((invg𝑀)‘𝑥)))
5554ralrimiva 3133 . . . 4 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ∀𝑦𝑆 (((invg𝑀)‘𝑥)(+g𝑀)𝑦) = (𝑦(+g𝑀)((invg𝑀)‘𝑥)))
56 simplr 768 . . . . 5 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑆𝐵)
57 simpll 766 . . . . . 6 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑀 ∈ Grp)
58 simpr 484 . . . . . . 7 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑥 ∈ (𝑍𝑆))
597, 58sselid 3961 . . . . . 6 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑥𝐵)
6057, 59, 11syl2anc 584 . . . . 5 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ((invg𝑀)‘𝑥) ∈ 𝐵)
612, 15, 3cntzel 19311 . . . . 5 ((𝑆𝐵 ∧ ((invg𝑀)‘𝑥) ∈ 𝐵) → (((invg𝑀)‘𝑥) ∈ (𝑍𝑆) ↔ ∀𝑦𝑆 (((invg𝑀)‘𝑥)(+g𝑀)𝑦) = (𝑦(+g𝑀)((invg𝑀)‘𝑥))))
6256, 60, 61syl2anc 584 . . . 4 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → (((invg𝑀)‘𝑥) ∈ (𝑍𝑆) ↔ ∀𝑦𝑆 (((invg𝑀)‘𝑥)(+g𝑀)𝑦) = (𝑦(+g𝑀)((invg𝑀)‘𝑥))))
6355, 62mpbird 257 . . 3 (((𝑀 ∈ Grp ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ((invg𝑀)‘𝑥) ∈ (𝑍𝑆))
6463ralrimiva 3133 . 2 ((𝑀 ∈ Grp ∧ 𝑆𝐵) → ∀𝑥 ∈ (𝑍𝑆)((invg𝑀)‘𝑥) ∈ (𝑍𝑆))
6510issubg3 19132 . . 3 (𝑀 ∈ Grp → ((𝑍𝑆) ∈ (SubGrp‘𝑀) ↔ ((𝑍𝑆) ∈ (SubMnd‘𝑀) ∧ ∀𝑥 ∈ (𝑍𝑆)((invg𝑀)‘𝑥) ∈ (𝑍𝑆))))
6665adantr 480 . 2 ((𝑀 ∈ Grp ∧ 𝑆𝐵) → ((𝑍𝑆) ∈ (SubGrp‘𝑀) ↔ ((𝑍𝑆) ∈ (SubMnd‘𝑀) ∧ ∀𝑥 ∈ (𝑍𝑆)((invg𝑀)‘𝑥) ∈ (𝑍𝑆))))
675, 64, 66mpbir2and 713 1 ((𝑀 ∈ Grp ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubGrp‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  wss 3931  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  0gc0g 17458  Mndcmnd 18717  SubMndcsubmnd 18765  Grpcgrp 18921  invgcminusg 18922  SubGrpcsubg 19108  Cntzccntz 19303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-subg 19111  df-cntz 19305
This theorem is referenced by:  cntrnsg  19332  lsmcntz  19665  cntrabl  19829  dprdz  20018  dprdcntz2  20026  dmdprdsplit2lem  20033  cntzsdrg  20767
  Copyright terms: Public domain W3C validator