![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntzrec | Structured version Visualization version GIF version |
Description: Reciprocity relationship for centralizers. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
cntzrec.b | ⊢ 𝐵 = (Base‘𝑀) |
cntzrec.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
cntzrec | ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑆 ⊆ (𝑍‘𝑇) ↔ 𝑇 ⊆ (𝑍‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralcom 3295 | . . . 4 ⊢ (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥) ↔ ∀𝑦 ∈ 𝑇 ∀𝑥 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)) | |
2 | eqcom 2747 | . . . . 5 ⊢ ((𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥) ↔ (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)) | |
3 | 2 | 2ralbii 3134 | . . . 4 ⊢ (∀𝑦 ∈ 𝑇 ∀𝑥 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥) ↔ ∀𝑦 ∈ 𝑇 ∀𝑥 ∈ 𝑆 (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)) |
4 | 1, 3 | bitri 275 | . . 3 ⊢ (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥) ↔ ∀𝑦 ∈ 𝑇 ∀𝑥 ∈ 𝑆 (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)) |
5 | 4 | a1i 11 | . 2 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥) ↔ ∀𝑦 ∈ 𝑇 ∀𝑥 ∈ 𝑆 (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦))) |
6 | cntzrec.b | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
7 | eqid 2740 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
8 | cntzrec.z | . . 3 ⊢ 𝑍 = (Cntz‘𝑀) | |
9 | 6, 7, 8 | sscntz 19366 | . 2 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑆 ⊆ (𝑍‘𝑇) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥))) |
10 | 6, 7, 8 | sscntz 19366 | . . 3 ⊢ ((𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝐵) → (𝑇 ⊆ (𝑍‘𝑆) ↔ ∀𝑦 ∈ 𝑇 ∀𝑥 ∈ 𝑆 (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦))) |
11 | 10 | ancoms 458 | . 2 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑇 ⊆ (𝑍‘𝑆) ↔ ∀𝑦 ∈ 𝑇 ∀𝑥 ∈ 𝑆 (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦))) |
12 | 5, 9, 11 | 3bitr4d 311 | 1 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑆 ⊆ (𝑍‘𝑇) ↔ 𝑇 ⊆ (𝑍‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∀wral 3067 ⊆ wss 3976 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 Cntzccntz 19355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-cntz 19357 |
This theorem is referenced by: cntzrecd 19720 lsmcntzr 19722 cntzspan 19886 dprdfadd 20064 |
Copyright terms: Public domain | W3C validator |