Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cntzrec | Structured version Visualization version GIF version |
Description: Reciprocity relationship for centralizers. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
cntzrec.b | ⊢ 𝐵 = (Base‘𝑀) |
cntzrec.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
cntzrec | ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑆 ⊆ (𝑍‘𝑇) ↔ 𝑇 ⊆ (𝑍‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralcom 3267 | . . . 4 ⊢ (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥) ↔ ∀𝑦 ∈ 𝑇 ∀𝑥 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)) | |
2 | eqcom 2744 | . . . . 5 ⊢ ((𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥) ↔ (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)) | |
3 | 2 | 2ralbii 3089 | . . . 4 ⊢ (∀𝑦 ∈ 𝑇 ∀𝑥 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥) ↔ ∀𝑦 ∈ 𝑇 ∀𝑥 ∈ 𝑆 (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)) |
4 | 1, 3 | bitri 278 | . . 3 ⊢ (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥) ↔ ∀𝑦 ∈ 𝑇 ∀𝑥 ∈ 𝑆 (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)) |
5 | 4 | a1i 11 | . 2 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥) ↔ ∀𝑦 ∈ 𝑇 ∀𝑥 ∈ 𝑆 (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦))) |
6 | cntzrec.b | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
7 | eqid 2737 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
8 | cntzrec.z | . . 3 ⊢ 𝑍 = (Cntz‘𝑀) | |
9 | 6, 7, 8 | sscntz 18720 | . 2 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑆 ⊆ (𝑍‘𝑇) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥))) |
10 | 6, 7, 8 | sscntz 18720 | . . 3 ⊢ ((𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝐵) → (𝑇 ⊆ (𝑍‘𝑆) ↔ ∀𝑦 ∈ 𝑇 ∀𝑥 ∈ 𝑆 (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦))) |
11 | 10 | ancoms 462 | . 2 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑇 ⊆ (𝑍‘𝑆) ↔ ∀𝑦 ∈ 𝑇 ∀𝑥 ∈ 𝑆 (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦))) |
12 | 5, 9, 11 | 3bitr4d 314 | 1 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑆 ⊆ (𝑍‘𝑇) ↔ 𝑇 ⊆ (𝑍‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∀wral 3061 ⊆ wss 3866 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 +gcplusg 16802 Cntzccntz 18709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-cntz 18711 |
This theorem is referenced by: cntzrecd 19068 lsmcntzr 19070 cntzspan 19229 dprdfadd 19407 |
Copyright terms: Public domain | W3C validator |