![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntzrec | Structured version Visualization version GIF version |
Description: Reciprocity relationship for centralizers. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
cntzrec.b | ⊢ 𝐵 = (Base‘𝑀) |
cntzrec.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
cntzrec | ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑆 ⊆ (𝑍‘𝑇) ↔ 𝑇 ⊆ (𝑍‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralcom 3281 | . . . 4 ⊢ (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥) ↔ ∀𝑦 ∈ 𝑇 ∀𝑥 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥)) | |
2 | eqcom 2734 | . . . . 5 ⊢ ((𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥) ↔ (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)) | |
3 | 2 | 2ralbii 3123 | . . . 4 ⊢ (∀𝑦 ∈ 𝑇 ∀𝑥 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥) ↔ ∀𝑦 ∈ 𝑇 ∀𝑥 ∈ 𝑆 (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)) |
4 | 1, 3 | bitri 275 | . . 3 ⊢ (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥) ↔ ∀𝑦 ∈ 𝑇 ∀𝑥 ∈ 𝑆 (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)) |
5 | 4 | a1i 11 | . 2 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥) ↔ ∀𝑦 ∈ 𝑇 ∀𝑥 ∈ 𝑆 (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦))) |
6 | cntzrec.b | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
7 | eqid 2727 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
8 | cntzrec.z | . . 3 ⊢ 𝑍 = (Cntz‘𝑀) | |
9 | 6, 7, 8 | sscntz 19268 | . 2 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑆 ⊆ (𝑍‘𝑇) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥(+g‘𝑀)𝑦) = (𝑦(+g‘𝑀)𝑥))) |
10 | 6, 7, 8 | sscntz 19268 | . . 3 ⊢ ((𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝐵) → (𝑇 ⊆ (𝑍‘𝑆) ↔ ∀𝑦 ∈ 𝑇 ∀𝑥 ∈ 𝑆 (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦))) |
11 | 10 | ancoms 458 | . 2 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑇 ⊆ (𝑍‘𝑆) ↔ ∀𝑦 ∈ 𝑇 ∀𝑥 ∈ 𝑆 (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦))) |
12 | 5, 9, 11 | 3bitr4d 311 | 1 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑆 ⊆ (𝑍‘𝑇) ↔ 𝑇 ⊆ (𝑍‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∀wral 3056 ⊆ wss 3944 ‘cfv 6542 (class class class)co 7414 Basecbs 17171 +gcplusg 17224 Cntzccntz 19257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-cntz 19259 |
This theorem is referenced by: cntzrecd 19624 lsmcntzr 19626 cntzspan 19790 dprdfadd 19968 |
Copyright terms: Public domain | W3C validator |