MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzrec Structured version   Visualization version   GIF version

Theorem cntzrec 18728
Description: Reciprocity relationship for centralizers. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
cntzrec.b 𝐵 = (Base‘𝑀)
cntzrec.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzrec ((𝑆𝐵𝑇𝐵) → (𝑆 ⊆ (𝑍𝑇) ↔ 𝑇 ⊆ (𝑍𝑆)))

Proof of Theorem cntzrec
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ralcom 3267 . . . 4 (∀𝑥𝑆𝑦𝑇 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ↔ ∀𝑦𝑇𝑥𝑆 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))
2 eqcom 2744 . . . . 5 ((𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ↔ (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦))
322ralbii 3089 . . . 4 (∀𝑦𝑇𝑥𝑆 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ↔ ∀𝑦𝑇𝑥𝑆 (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦))
41, 3bitri 278 . . 3 (∀𝑥𝑆𝑦𝑇 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ↔ ∀𝑦𝑇𝑥𝑆 (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦))
54a1i 11 . 2 ((𝑆𝐵𝑇𝐵) → (∀𝑥𝑆𝑦𝑇 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ↔ ∀𝑦𝑇𝑥𝑆 (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)))
6 cntzrec.b . . 3 𝐵 = (Base‘𝑀)
7 eqid 2737 . . 3 (+g𝑀) = (+g𝑀)
8 cntzrec.z . . 3 𝑍 = (Cntz‘𝑀)
96, 7, 8sscntz 18720 . 2 ((𝑆𝐵𝑇𝐵) → (𝑆 ⊆ (𝑍𝑇) ↔ ∀𝑥𝑆𝑦𝑇 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))
106, 7, 8sscntz 18720 . . 3 ((𝑇𝐵𝑆𝐵) → (𝑇 ⊆ (𝑍𝑆) ↔ ∀𝑦𝑇𝑥𝑆 (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)))
1110ancoms 462 . 2 ((𝑆𝐵𝑇𝐵) → (𝑇 ⊆ (𝑍𝑆) ↔ ∀𝑦𝑇𝑥𝑆 (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)))
125, 9, 113bitr4d 314 1 ((𝑆𝐵𝑇𝐵) → (𝑆 ⊆ (𝑍𝑇) ↔ 𝑇 ⊆ (𝑍𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wral 3061  wss 3866  cfv 6380  (class class class)co 7213  Basecbs 16760  +gcplusg 16802  Cntzccntz 18709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-cntz 18711
This theorem is referenced by:  cntzrecd  19068  lsmcntzr  19070  cntzspan  19229  dprdfadd  19407
  Copyright terms: Public domain W3C validator