MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzrec Structured version   Visualization version   GIF version

Theorem cntzrec 18029
Description: Reciprocity relationship for centralizers. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
cntzrec.b 𝐵 = (Base‘𝑀)
cntzrec.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzrec ((𝑆𝐵𝑇𝐵) → (𝑆 ⊆ (𝑍𝑇) ↔ 𝑇 ⊆ (𝑍𝑆)))

Proof of Theorem cntzrec
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ralcom 3245 . . . 4 (∀𝑥𝑆𝑦𝑇 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ↔ ∀𝑦𝑇𝑥𝑆 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))
2 eqcom 2772 . . . . 5 ((𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ↔ (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦))
322ralbii 3128 . . . 4 (∀𝑦𝑇𝑥𝑆 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ↔ ∀𝑦𝑇𝑥𝑆 (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦))
41, 3bitri 266 . . 3 (∀𝑥𝑆𝑦𝑇 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ↔ ∀𝑦𝑇𝑥𝑆 (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦))
54a1i 11 . 2 ((𝑆𝐵𝑇𝐵) → (∀𝑥𝑆𝑦𝑇 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ↔ ∀𝑦𝑇𝑥𝑆 (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)))
6 cntzrec.b . . 3 𝐵 = (Base‘𝑀)
7 eqid 2765 . . 3 (+g𝑀) = (+g𝑀)
8 cntzrec.z . . 3 𝑍 = (Cntz‘𝑀)
96, 7, 8sscntz 18022 . 2 ((𝑆𝐵𝑇𝐵) → (𝑆 ⊆ (𝑍𝑇) ↔ ∀𝑥𝑆𝑦𝑇 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))
106, 7, 8sscntz 18022 . . 3 ((𝑇𝐵𝑆𝐵) → (𝑇 ⊆ (𝑍𝑆) ↔ ∀𝑦𝑇𝑥𝑆 (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)))
1110ancoms 450 . 2 ((𝑆𝐵𝑇𝐵) → (𝑇 ⊆ (𝑍𝑆) ↔ ∀𝑦𝑇𝑥𝑆 (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)))
125, 9, 113bitr4d 302 1 ((𝑆𝐵𝑇𝐵) → (𝑆 ⊆ (𝑍𝑇) ↔ 𝑇 ⊆ (𝑍𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wral 3055  wss 3732  cfv 6068  (class class class)co 6842  Basecbs 16130  +gcplusg 16214  Cntzccntz 18011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-cntz 18013
This theorem is referenced by:  cntzrecd  18355  lsmcntzr  18357  cntzspan  18513  dprdfadd  18686
  Copyright terms: Public domain W3C validator