MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzrec Structured version   Visualization version   GIF version

Theorem cntzrec 18940
Description: Reciprocity relationship for centralizers. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
cntzrec.b 𝐵 = (Base‘𝑀)
cntzrec.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzrec ((𝑆𝐵𝑇𝐵) → (𝑆 ⊆ (𝑍𝑇) ↔ 𝑇 ⊆ (𝑍𝑆)))

Proof of Theorem cntzrec
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ralcom 3166 . . . 4 (∀𝑥𝑆𝑦𝑇 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ↔ ∀𝑦𝑇𝑥𝑆 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))
2 eqcom 2745 . . . . 5 ((𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ↔ (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦))
322ralbii 3093 . . . 4 (∀𝑦𝑇𝑥𝑆 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ↔ ∀𝑦𝑇𝑥𝑆 (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦))
41, 3bitri 274 . . 3 (∀𝑥𝑆𝑦𝑇 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ↔ ∀𝑦𝑇𝑥𝑆 (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦))
54a1i 11 . 2 ((𝑆𝐵𝑇𝐵) → (∀𝑥𝑆𝑦𝑇 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ↔ ∀𝑦𝑇𝑥𝑆 (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)))
6 cntzrec.b . . 3 𝐵 = (Base‘𝑀)
7 eqid 2738 . . 3 (+g𝑀) = (+g𝑀)
8 cntzrec.z . . 3 𝑍 = (Cntz‘𝑀)
96, 7, 8sscntz 18932 . 2 ((𝑆𝐵𝑇𝐵) → (𝑆 ⊆ (𝑍𝑇) ↔ ∀𝑥𝑆𝑦𝑇 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))
106, 7, 8sscntz 18932 . . 3 ((𝑇𝐵𝑆𝐵) → (𝑇 ⊆ (𝑍𝑆) ↔ ∀𝑦𝑇𝑥𝑆 (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)))
1110ancoms 459 . 2 ((𝑆𝐵𝑇𝐵) → (𝑇 ⊆ (𝑍𝑆) ↔ ∀𝑦𝑇𝑥𝑆 (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦)))
125, 9, 113bitr4d 311 1 ((𝑆𝐵𝑇𝐵) → (𝑆 ⊆ (𝑍𝑇) ↔ 𝑇 ⊆ (𝑍𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wral 3064  wss 3887  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Cntzccntz 18921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-cntz 18923
This theorem is referenced by:  cntzrecd  19284  lsmcntzr  19286  cntzspan  19445  dprdfadd  19623
  Copyright terms: Public domain W3C validator