![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > endomtr | Structured version Visualization version GIF version |
Description: Transitivity of equinumerosity and dominance. (Contributed by NM, 7-Jun-1998.) |
Ref | Expression |
---|---|
endomtr | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endom 8972 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
2 | domtr 9000 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
3 | 1, 2 | sylan 579 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 class class class wbr 5139 ≈ cen 8933 ≼ cdom 8934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-f1o 6541 df-en 8937 df-dom 8938 |
This theorem is referenced by: cnvct 9031 undomOLD 9057 xpdom1g 9066 xpdom3 9067 domunsncan 9069 sucdom2OLD 9079 domsdomtr 9109 domen1 9116 mapdom1 9139 mapdom2 9145 mapdom3 9146 phpOLD 9219 onomeneqOLD 9226 hartogslem1 9534 harcard 9970 infxpenlem 10005 infpwfien 10054 alephsucdom 10071 mappwen 10104 dfac12lem2 10136 djulepw 10184 fictb 10237 cfflb 10251 canthp1lem1 10644 pwfseqlem5 10655 pwxpndom2 10657 pwdjundom 10659 gchxpidm 10661 gchhar 10671 tskinf 10761 inar1 10767 gruina 10810 rexpen 16170 mreexdomd 17594 hauspwdom 23329 rectbntr0 24672 rabfodom 32215 snct 32410 dya2iocct 33771 finminlem 35694 iccioo01 36699 pibt2 36789 lindsdom 36976 poimirlem26 37008 heiborlem3 37175 pellexlem4 42084 pellexlem5 42085 safesnsupfidom1o 42682 sn1dom 42791 mpct 44410 aacllem 48060 |
Copyright terms: Public domain | W3C validator |