| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > endomtr | Structured version Visualization version GIF version | ||
| Description: Transitivity of equinumerosity and dominance. (Contributed by NM, 7-Jun-1998.) |
| Ref | Expression |
|---|---|
| endomtr | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endom 8927 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
| 2 | domtr 8955 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 class class class wbr 5102 ≈ cen 8892 ≼ cdom 8893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-f1o 6506 df-en 8896 df-dom 8897 |
| This theorem is referenced by: cnvct 8982 xpdom1g 9015 xpdom3 9016 domunsncan 9018 domsdomtr 9053 domen1 9060 mapdom1 9083 mapdom2 9089 mapdom3 9090 hartogslem1 9471 harcard 9909 infxpenlem 9944 infpwfien 9993 alephsucdom 10010 mappwen 10043 dfac12lem2 10076 djulepw 10124 fictb 10175 cfflb 10190 canthp1lem1 10583 pwfseqlem5 10594 pwxpndom2 10596 pwdjundom 10598 gchxpidm 10600 gchhar 10610 tskinf 10700 inar1 10706 gruina 10749 rexpen 16173 mreexdomd 17591 hauspwdom 23422 rectbntr0 24755 rabfodom 32485 snct 32688 dya2iocct 34265 finminlem 36300 iccioo01 37309 pibt2 37399 lindsdom 37602 poimirlem26 37634 heiborlem3 37801 pellexlem4 42814 pellexlem5 42815 safesnsupfidom1o 43400 sn1dom 43509 mpct 45189 thincciso2 49438 aacllem 49784 |
| Copyright terms: Public domain | W3C validator |