Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > endomtr | Structured version Visualization version GIF version |
Description: Transitivity of equinumerosity and dominance. (Contributed by NM, 7-Jun-1998.) |
Ref | Expression |
---|---|
endomtr | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endom 8722 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
2 | domtr 8748 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
3 | 1, 2 | sylan 579 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 class class class wbr 5070 ≈ cen 8688 ≼ cdom 8689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-f1o 6425 df-en 8692 df-dom 8693 |
This theorem is referenced by: cnvct 8778 undom 8800 xpdom1g 8809 xpdom3 8810 domunsncan 8812 sucdom2 8822 domsdomtr 8848 domen1 8855 mapdom1 8878 mapdom2 8884 mapdom3 8885 php 8897 onomeneq 8943 hartogslem1 9231 harcard 9667 infxpenlem 9700 infpwfien 9749 alephsucdom 9766 mappwen 9799 dfac12lem2 9831 djulepw 9879 fictb 9932 cfflb 9946 canthp1lem1 10339 pwfseqlem5 10350 pwxpndom2 10352 pwdjundom 10354 gchxpidm 10356 gchhar 10366 tskinf 10456 inar1 10462 gruina 10505 rexpen 15865 mreexdomd 17275 hauspwdom 22560 rectbntr0 23901 rabfodom 30752 snct 30950 dya2iocct 32147 finminlem 34434 iccioo01 35425 pibt2 35515 lindsdom 35698 poimirlem26 35730 heiborlem3 35898 pellexlem4 40570 pellexlem5 40571 sn1dom 41031 mpct 42630 aacllem 46391 |
Copyright terms: Public domain | W3C validator |