| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > endomtr | Structured version Visualization version GIF version | ||
| Description: Transitivity of equinumerosity and dominance. (Contributed by NM, 7-Jun-1998.) |
| Ref | Expression |
|---|---|
| endomtr | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endom 8953 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
| 2 | domtr 8981 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 class class class wbr 5110 ≈ cen 8918 ≼ cdom 8919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-f1o 6521 df-en 8922 df-dom 8923 |
| This theorem is referenced by: cnvct 9008 undomOLD 9034 xpdom1g 9043 xpdom3 9044 domunsncan 9046 sucdom2OLD 9056 domsdomtr 9082 domen1 9089 mapdom1 9112 mapdom2 9118 mapdom3 9119 hartogslem1 9502 harcard 9938 infxpenlem 9973 infpwfien 10022 alephsucdom 10039 mappwen 10072 dfac12lem2 10105 djulepw 10153 fictb 10204 cfflb 10219 canthp1lem1 10612 pwfseqlem5 10623 pwxpndom2 10625 pwdjundom 10627 gchxpidm 10629 gchhar 10639 tskinf 10729 inar1 10735 gruina 10778 rexpen 16203 mreexdomd 17617 hauspwdom 23395 rectbntr0 24728 rabfodom 32441 snct 32644 dya2iocct 34278 finminlem 36313 iccioo01 37322 pibt2 37412 lindsdom 37615 poimirlem26 37647 heiborlem3 37814 pellexlem4 42827 pellexlem5 42828 safesnsupfidom1o 43413 sn1dom 43522 mpct 45202 thincciso2 49448 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |