| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > endomtr | Structured version Visualization version GIF version | ||
| Description: Transitivity of equinumerosity and dominance. (Contributed by NM, 7-Jun-1998.) |
| Ref | Expression |
|---|---|
| endomtr | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endom 8901 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
| 2 | domtr 8929 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 class class class wbr 5089 ≈ cen 8866 ≼ cdom 8867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-f1o 6488 df-en 8870 df-dom 8871 |
| This theorem is referenced by: cnvct 8956 xpdom1g 8987 xpdom3 8988 domunsncan 8990 domsdomtr 9025 domen1 9032 mapdom1 9055 mapdom2 9061 mapdom3 9062 hartogslem1 9428 harcard 9871 infxpenlem 9904 infpwfien 9953 alephsucdom 9970 mappwen 10003 dfac12lem2 10036 djulepw 10084 fictb 10135 cfflb 10150 canthp1lem1 10543 pwfseqlem5 10554 pwxpndom2 10556 pwdjundom 10558 gchxpidm 10560 gchhar 10570 tskinf 10660 inar1 10666 gruina 10709 rexpen 16137 mreexdomd 17555 hauspwdom 23416 rectbntr0 24748 rabfodom 32485 snct 32695 dya2iocct 34293 finminlem 36362 iccioo01 37371 pibt2 37461 lindsdom 37653 poimirlem26 37685 heiborlem3 37852 pellexlem4 42924 pellexlem5 42925 safesnsupfidom1o 43509 sn1dom 43618 mpct 45297 thincciso2 49555 aacllem 49901 |
| Copyright terms: Public domain | W3C validator |