| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > endomtr | Structured version Visualization version GIF version | ||
| Description: Transitivity of equinumerosity and dominance. (Contributed by NM, 7-Jun-1998.) |
| Ref | Expression |
|---|---|
| endomtr | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endom 8904 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
| 2 | domtr 8932 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 class class class wbr 5092 ≈ cen 8869 ≼ cdom 8870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-f1o 6489 df-en 8873 df-dom 8874 |
| This theorem is referenced by: cnvct 8959 xpdom1g 8991 xpdom3 8992 domunsncan 8994 domsdomtr 9029 domen1 9036 mapdom1 9059 mapdom2 9065 mapdom3 9066 hartogslem1 9434 harcard 9874 infxpenlem 9907 infpwfien 9956 alephsucdom 9973 mappwen 10006 dfac12lem2 10039 djulepw 10087 fictb 10138 cfflb 10153 canthp1lem1 10546 pwfseqlem5 10557 pwxpndom2 10559 pwdjundom 10561 gchxpidm 10563 gchhar 10573 tskinf 10663 inar1 10669 gruina 10712 rexpen 16137 mreexdomd 17555 hauspwdom 23386 rectbntr0 24719 rabfodom 32454 snct 32664 dya2iocct 34264 finminlem 36312 iccioo01 37321 pibt2 37411 lindsdom 37614 poimirlem26 37646 heiborlem3 37813 pellexlem4 42825 pellexlem5 42826 safesnsupfidom1o 43410 sn1dom 43519 mpct 45199 thincciso2 49460 aacllem 49806 |
| Copyright terms: Public domain | W3C validator |