![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > endomtr | Structured version Visualization version GIF version |
Description: Transitivity of equinumerosity and dominance. (Contributed by NM, 7-Jun-1998.) |
Ref | Expression |
---|---|
endomtr | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endom 9018 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
2 | domtr 9046 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 class class class wbr 5148 ≈ cen 8981 ≼ cdom 8982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-f1o 6570 df-en 8985 df-dom 8986 |
This theorem is referenced by: cnvct 9073 undomOLD 9099 xpdom1g 9108 xpdom3 9109 domunsncan 9111 sucdom2OLD 9121 domsdomtr 9151 domen1 9158 mapdom1 9181 mapdom2 9187 mapdom3 9188 phpOLD 9257 onomeneqOLD 9264 hartogslem1 9580 harcard 10016 infxpenlem 10051 infpwfien 10100 alephsucdom 10117 mappwen 10150 dfac12lem2 10183 djulepw 10231 fictb 10282 cfflb 10297 canthp1lem1 10690 pwfseqlem5 10701 pwxpndom2 10703 pwdjundom 10705 gchxpidm 10707 gchhar 10717 tskinf 10807 inar1 10813 gruina 10856 rexpen 16261 mreexdomd 17694 hauspwdom 23525 rectbntr0 24868 rabfodom 32533 snct 32731 dya2iocct 34262 finminlem 36301 iccioo01 37310 pibt2 37400 lindsdom 37601 poimirlem26 37633 heiborlem3 37800 pellexlem4 42820 pellexlem5 42821 safesnsupfidom1o 43407 sn1dom 43516 mpct 45144 aacllem 49032 |
Copyright terms: Public domain | W3C validator |