| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > endomtr | Structured version Visualization version GIF version | ||
| Description: Transitivity of equinumerosity and dominance. (Contributed by NM, 7-Jun-1998.) |
| Ref | Expression |
|---|---|
| endomtr | ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endom 8993 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
| 2 | domtr 9021 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 class class class wbr 5119 ≈ cen 8956 ≼ cdom 8957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-f1o 6538 df-en 8960 df-dom 8961 |
| This theorem is referenced by: cnvct 9048 undomOLD 9074 xpdom1g 9083 xpdom3 9084 domunsncan 9086 sucdom2OLD 9096 domsdomtr 9126 domen1 9133 mapdom1 9156 mapdom2 9162 mapdom3 9163 phpOLD 9231 onomeneqOLD 9238 hartogslem1 9556 harcard 9992 infxpenlem 10027 infpwfien 10076 alephsucdom 10093 mappwen 10126 dfac12lem2 10159 djulepw 10207 fictb 10258 cfflb 10273 canthp1lem1 10666 pwfseqlem5 10677 pwxpndom2 10679 pwdjundom 10681 gchxpidm 10683 gchhar 10693 tskinf 10783 inar1 10789 gruina 10832 rexpen 16246 mreexdomd 17661 hauspwdom 23439 rectbntr0 24772 rabfodom 32486 snct 32691 dya2iocct 34312 finminlem 36336 iccioo01 37345 pibt2 37435 lindsdom 37638 poimirlem26 37670 heiborlem3 37837 pellexlem4 42855 pellexlem5 42856 safesnsupfidom1o 43441 sn1dom 43550 mpct 45225 thincciso2 49341 aacllem 49665 |
| Copyright terms: Public domain | W3C validator |