| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cofidf1 | Structured version Visualization version GIF version | ||
| Description: If "〈𝐹, 𝐺〉 is a section of 〈𝐾, 𝐿〉 " in a category of small categories (in a universe), then 𝐹 is injective, and 𝐾 is surjective. (Contributed by Zhi Wang, 15-Nov-2025.) |
| Ref | Expression |
|---|---|
| cofidval.i | ⊢ 𝐼 = (idfunc‘𝐷) |
| cofidval.b | ⊢ 𝐵 = (Base‘𝐷) |
| cofidval.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| cofidval.k | ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) |
| cofidval.o | ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) |
| cofidf1.c | ⊢ 𝐶 = (Base‘𝐸) |
| Ref | Expression |
|---|---|
| cofidf1 | ⊢ (𝜑 → (𝐹:𝐵–1-1→𝐶 ∧ 𝐾:𝐶–onto→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofidval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
| 2 | cofidf1.c | . . . 4 ⊢ 𝐶 = (Base‘𝐸) | |
| 3 | cofidval.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 4 | 1, 2, 3 | funcf1 17834 | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| 5 | cofidval.i | . . . . 5 ⊢ 𝐼 = (idfunc‘𝐷) | |
| 6 | cofidval.k | . . . . 5 ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) | |
| 7 | cofidval.o | . . . . 5 ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) | |
| 8 | eqid 2730 | . . . . 5 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 9 | 5, 1, 3, 6, 7, 8 | cofidval 49036 | . . . 4 ⊢ (𝜑 → ((𝐾 ∘ 𝐹) = ( I ↾ 𝐵) ∧ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦))) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐷)‘𝑧))))) |
| 10 | 9 | simpld 494 | . . 3 ⊢ (𝜑 → (𝐾 ∘ 𝐹) = ( I ↾ 𝐵)) |
| 11 | fcof1 7269 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ (𝐾 ∘ 𝐹) = ( I ↾ 𝐵)) → 𝐹:𝐵–1-1→𝐶) | |
| 12 | 4, 10, 11 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐹:𝐵–1-1→𝐶) |
| 13 | 2, 1, 6 | funcf1 17834 | . . 3 ⊢ (𝜑 → 𝐾:𝐶⟶𝐵) |
| 14 | fcofo 7270 | . . 3 ⊢ ((𝐾:𝐶⟶𝐵 ∧ 𝐹:𝐵⟶𝐶 ∧ (𝐾 ∘ 𝐹) = ( I ↾ 𝐵)) → 𝐾:𝐶–onto→𝐵) | |
| 15 | 13, 4, 10, 14 | syl3anc 1373 | . 2 ⊢ (𝜑 → 𝐾:𝐶–onto→𝐵) |
| 16 | 12, 15 | jca 511 | 1 ⊢ (𝜑 → (𝐹:𝐵–1-1→𝐶 ∧ 𝐾:𝐶–onto→𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 〈cop 4603 class class class wbr 5115 ↦ cmpt 5196 I cid 5540 × cxp 5644 ↾ cres 5648 ∘ ccom 5650 ⟶wf 6515 –1-1→wf1 6516 –onto→wfo 6517 ‘cfv 6519 (class class class)co 7394 ∈ cmpo 7396 Basecbs 17185 Hom chom 17237 Func cfunc 17822 idfunccidfu 17823 ∘func ccofu 17824 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-1st 7977 df-2nd 7978 df-map 8805 df-ixp 8875 df-func 17826 df-idfu 17827 df-cofu 17828 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |