Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cofidf2 Structured version   Visualization version   GIF version

Theorem cofidf2 49109
Description: If "𝐹 is a section of 𝐺 " in a category of small categories (in a universe), then the morphism part of 𝐹 is injective, and the morphism part of 𝐺 is surjective in the image of 𝐹. (Contributed by Zhi Wang, 15-Nov-2025.)
Hypotheses
Ref Expression
cofidval.i 𝐼 = (idfunc𝐷)
cofidval.b 𝐵 = (Base‘𝐷)
cofidval.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
cofidval.k (𝜑𝐾(𝐸 Func 𝐷)𝐿)
cofidval.o (𝜑 → (⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩) = 𝐼)
cofidval.h 𝐻 = (Hom ‘𝐷)
cofidf2.j 𝐽 = (Hom ‘𝐸)
cofidf2.x (𝜑𝑋𝐵)
cofidf2.y (𝜑𝑌𝐵)
Assertion
Ref Expression
cofidf2 (𝜑 → ((𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌)) ∧ ((𝐹𝑋)𝐿(𝐹𝑌)):((𝐹𝑋)𝐽(𝐹𝑌))–onto→(𝑋𝐻𝑌)))

Proof of Theorem cofidf2
StepHypRef Expression
1 cofidval.i . . 3 𝐼 = (idfunc𝐷)
2 cofidval.b . . 3 𝐵 = (Base‘𝐷)
3 cofidval.f . . . 4 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
4 df-br 5108 . . . 4 (𝐹(𝐷 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
53, 4sylib 218 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
6 cofidval.k . . . 4 (𝜑𝐾(𝐸 Func 𝐷)𝐿)
7 df-br 5108 . . . 4 (𝐾(𝐸 Func 𝐷)𝐿 ↔ ⟨𝐾, 𝐿⟩ ∈ (𝐸 Func 𝐷))
86, 7sylib 218 . . 3 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (𝐸 Func 𝐷))
9 cofidval.o . . 3 (𝜑 → (⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩) = 𝐼)
10 cofidval.h . . 3 𝐻 = (Hom ‘𝐷)
11 cofidf2.j . . 3 𝐽 = (Hom ‘𝐸)
12 cofidf2.x . . 3 (𝜑𝑋𝐵)
13 cofidf2.y . . 3 (𝜑𝑌𝐵)
141, 2, 5, 8, 9, 10, 11, 12, 13cofidf2a 49106 . 2 (𝜑 → ((𝑋(2nd ‘⟨𝐹, 𝐺⟩)𝑌):(𝑋𝐻𝑌)–1-1→(((1st ‘⟨𝐹, 𝐺⟩)‘𝑋)𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑌)) ∧ (((1st ‘⟨𝐹, 𝐺⟩)‘𝑋)(2nd ‘⟨𝐾, 𝐿⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑌)):(((1st ‘⟨𝐹, 𝐺⟩)‘𝑋)𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑌))–onto→(𝑋𝐻𝑌)))
153func2nd 49067 . . . . 5 (𝜑 → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
1615oveqd 7404 . . . 4 (𝜑 → (𝑋(2nd ‘⟨𝐹, 𝐺⟩)𝑌) = (𝑋𝐺𝑌))
17 eqidd 2730 . . . 4 (𝜑 → (𝑋𝐻𝑌) = (𝑋𝐻𝑌))
183func1st 49066 . . . . . 6 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1918fveq1d 6860 . . . . 5 (𝜑 → ((1st ‘⟨𝐹, 𝐺⟩)‘𝑋) = (𝐹𝑋))
2018fveq1d 6860 . . . . 5 (𝜑 → ((1st ‘⟨𝐹, 𝐺⟩)‘𝑌) = (𝐹𝑌))
2119, 20oveq12d 7405 . . . 4 (𝜑 → (((1st ‘⟨𝐹, 𝐺⟩)‘𝑋)𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑌)) = ((𝐹𝑋)𝐽(𝐹𝑌)))
2216, 17, 21f1eq123d 6792 . . 3 (𝜑 → ((𝑋(2nd ‘⟨𝐹, 𝐺⟩)𝑌):(𝑋𝐻𝑌)–1-1→(((1st ‘⟨𝐹, 𝐺⟩)‘𝑋)𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑌)) ↔ (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌))))
236func2nd 49067 . . . . 5 (𝜑 → (2nd ‘⟨𝐾, 𝐿⟩) = 𝐿)
2423, 19, 20oveq123d 7408 . . . 4 (𝜑 → (((1st ‘⟨𝐹, 𝐺⟩)‘𝑋)(2nd ‘⟨𝐾, 𝐿⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑌)) = ((𝐹𝑋)𝐿(𝐹𝑌)))
2524, 21, 17foeq123d 6793 . . 3 (𝜑 → ((((1st ‘⟨𝐹, 𝐺⟩)‘𝑋)(2nd ‘⟨𝐾, 𝐿⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑌)):(((1st ‘⟨𝐹, 𝐺⟩)‘𝑋)𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑌))–onto→(𝑋𝐻𝑌) ↔ ((𝐹𝑋)𝐿(𝐹𝑌)):((𝐹𝑋)𝐽(𝐹𝑌))–onto→(𝑋𝐻𝑌)))
2622, 25anbi12d 632 . 2 (𝜑 → (((𝑋(2nd ‘⟨𝐹, 𝐺⟩)𝑌):(𝑋𝐻𝑌)–1-1→(((1st ‘⟨𝐹, 𝐺⟩)‘𝑋)𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑌)) ∧ (((1st ‘⟨𝐹, 𝐺⟩)‘𝑋)(2nd ‘⟨𝐾, 𝐿⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑌)):(((1st ‘⟨𝐹, 𝐺⟩)‘𝑋)𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑌))–onto→(𝑋𝐻𝑌)) ↔ ((𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌)) ∧ ((𝐹𝑋)𝐿(𝐹𝑌)):((𝐹𝑋)𝐽(𝐹𝑌))–onto→(𝑋𝐻𝑌))))
2714, 26mpbid 232 1 (𝜑 → ((𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌)) ∧ ((𝐹𝑋)𝐿(𝐹𝑌)):((𝐹𝑋)𝐽(𝐹𝑌))–onto→(𝑋𝐻𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4595   class class class wbr 5107  1-1wf1 6508  ontowfo 6509  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  Basecbs 17179  Hom chom 17231   Func cfunc 17816  idfunccidfu 17817  func ccofu 17818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-ixp 8871  df-func 17820  df-idfu 17821  df-cofu 17822
This theorem is referenced by:  cofidfth  49151
  Copyright terms: Public domain W3C validator