| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cofidf2 | Structured version Visualization version GIF version | ||
| Description: If "𝐹 is a section of 𝐺 " in a category of small categories (in a universe), then the morphism part of 𝐹 is injective, and the morphism part of 𝐺 is surjective in the image of 𝐹. (Contributed by Zhi Wang, 15-Nov-2025.) |
| Ref | Expression |
|---|---|
| cofidval.i | ⊢ 𝐼 = (idfunc‘𝐷) |
| cofidval.b | ⊢ 𝐵 = (Base‘𝐷) |
| cofidval.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| cofidval.k | ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) |
| cofidval.o | ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) |
| cofidval.h | ⊢ 𝐻 = (Hom ‘𝐷) |
| cofidf2.j | ⊢ 𝐽 = (Hom ‘𝐸) |
| cofidf2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| cofidf2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| cofidf2 | ⊢ (𝜑 → ((𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ∧ ((𝐹‘𝑋)𝐿(𝐹‘𝑌)):((𝐹‘𝑋)𝐽(𝐹‘𝑌))–onto→(𝑋𝐻𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofidval.i | . . 3 ⊢ 𝐼 = (idfunc‘𝐷) | |
| 2 | cofidval.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 3 | cofidval.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 4 | df-br 5092 | . . . 4 ⊢ (𝐹(𝐷 Func 𝐸)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) | |
| 5 | 3, 4 | sylib 218 | . . 3 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸)) |
| 6 | cofidval.k | . . . 4 ⊢ (𝜑 → 𝐾(𝐸 Func 𝐷)𝐿) | |
| 7 | df-br 5092 | . . . 4 ⊢ (𝐾(𝐸 Func 𝐷)𝐿 ↔ 〈𝐾, 𝐿〉 ∈ (𝐸 Func 𝐷)) | |
| 8 | 6, 7 | sylib 218 | . . 3 ⊢ (𝜑 → 〈𝐾, 𝐿〉 ∈ (𝐸 Func 𝐷)) |
| 9 | cofidval.o | . . 3 ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 𝐼) | |
| 10 | cofidval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐷) | |
| 11 | cofidf2.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐸) | |
| 12 | cofidf2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 13 | cofidf2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 14 | 1, 2, 5, 8, 9, 10, 11, 12, 13 | cofidf2a 49148 | . 2 ⊢ (𝜑 → ((𝑋(2nd ‘〈𝐹, 𝐺〉)𝑌):(𝑋𝐻𝑌)–1-1→(((1st ‘〈𝐹, 𝐺〉)‘𝑋)𝐽((1st ‘〈𝐹, 𝐺〉)‘𝑌)) ∧ (((1st ‘〈𝐹, 𝐺〉)‘𝑋)(2nd ‘〈𝐾, 𝐿〉)((1st ‘〈𝐹, 𝐺〉)‘𝑌)):(((1st ‘〈𝐹, 𝐺〉)‘𝑋)𝐽((1st ‘〈𝐹, 𝐺〉)‘𝑌))–onto→(𝑋𝐻𝑌))) |
| 15 | 3 | func2nd 49109 | . . . . 5 ⊢ (𝜑 → (2nd ‘〈𝐹, 𝐺〉) = 𝐺) |
| 16 | 15 | oveqd 7363 | . . . 4 ⊢ (𝜑 → (𝑋(2nd ‘〈𝐹, 𝐺〉)𝑌) = (𝑋𝐺𝑌)) |
| 17 | eqidd 2732 | . . . 4 ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋𝐻𝑌)) | |
| 18 | 3 | func1st 49108 | . . . . . 6 ⊢ (𝜑 → (1st ‘〈𝐹, 𝐺〉) = 𝐹) |
| 19 | 18 | fveq1d 6824 | . . . . 5 ⊢ (𝜑 → ((1st ‘〈𝐹, 𝐺〉)‘𝑋) = (𝐹‘𝑋)) |
| 20 | 18 | fveq1d 6824 | . . . . 5 ⊢ (𝜑 → ((1st ‘〈𝐹, 𝐺〉)‘𝑌) = (𝐹‘𝑌)) |
| 21 | 19, 20 | oveq12d 7364 | . . . 4 ⊢ (𝜑 → (((1st ‘〈𝐹, 𝐺〉)‘𝑋)𝐽((1st ‘〈𝐹, 𝐺〉)‘𝑌)) = ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) |
| 22 | 16, 17, 21 | f1eq123d 6755 | . . 3 ⊢ (𝜑 → ((𝑋(2nd ‘〈𝐹, 𝐺〉)𝑌):(𝑋𝐻𝑌)–1-1→(((1st ‘〈𝐹, 𝐺〉)‘𝑋)𝐽((1st ‘〈𝐹, 𝐺〉)‘𝑌)) ↔ (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌)))) |
| 23 | 6 | func2nd 49109 | . . . . 5 ⊢ (𝜑 → (2nd ‘〈𝐾, 𝐿〉) = 𝐿) |
| 24 | 23, 19, 20 | oveq123d 7367 | . . . 4 ⊢ (𝜑 → (((1st ‘〈𝐹, 𝐺〉)‘𝑋)(2nd ‘〈𝐾, 𝐿〉)((1st ‘〈𝐹, 𝐺〉)‘𝑌)) = ((𝐹‘𝑋)𝐿(𝐹‘𝑌))) |
| 25 | 24, 21, 17 | foeq123d 6756 | . . 3 ⊢ (𝜑 → ((((1st ‘〈𝐹, 𝐺〉)‘𝑋)(2nd ‘〈𝐾, 𝐿〉)((1st ‘〈𝐹, 𝐺〉)‘𝑌)):(((1st ‘〈𝐹, 𝐺〉)‘𝑋)𝐽((1st ‘〈𝐹, 𝐺〉)‘𝑌))–onto→(𝑋𝐻𝑌) ↔ ((𝐹‘𝑋)𝐿(𝐹‘𝑌)):((𝐹‘𝑋)𝐽(𝐹‘𝑌))–onto→(𝑋𝐻𝑌))) |
| 26 | 22, 25 | anbi12d 632 | . 2 ⊢ (𝜑 → (((𝑋(2nd ‘〈𝐹, 𝐺〉)𝑌):(𝑋𝐻𝑌)–1-1→(((1st ‘〈𝐹, 𝐺〉)‘𝑋)𝐽((1st ‘〈𝐹, 𝐺〉)‘𝑌)) ∧ (((1st ‘〈𝐹, 𝐺〉)‘𝑋)(2nd ‘〈𝐾, 𝐿〉)((1st ‘〈𝐹, 𝐺〉)‘𝑌)):(((1st ‘〈𝐹, 𝐺〉)‘𝑋)𝐽((1st ‘〈𝐹, 𝐺〉)‘𝑌))–onto→(𝑋𝐻𝑌)) ↔ ((𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ∧ ((𝐹‘𝑋)𝐿(𝐹‘𝑌)):((𝐹‘𝑋)𝐽(𝐹‘𝑌))–onto→(𝑋𝐻𝑌)))) |
| 27 | 14, 26 | mpbid 232 | 1 ⊢ (𝜑 → ((𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹‘𝑋)𝐽(𝐹‘𝑌)) ∧ ((𝐹‘𝑋)𝐿(𝐹‘𝑌)):((𝐹‘𝑋)𝐽(𝐹‘𝑌))–onto→(𝑋𝐻𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 〈cop 4582 class class class wbr 5091 –1-1→wf1 6478 –onto→wfo 6479 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 Basecbs 17117 Hom chom 17169 Func cfunc 17758 idfunccidfu 17759 ∘func ccofu 17760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-ixp 8822 df-func 17762 df-idfu 17763 df-cofu 17764 |
| This theorem is referenced by: cofidfth 49193 |
| Copyright terms: Public domain | W3C validator |