Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cofidf2 Structured version   Visualization version   GIF version

Theorem cofidf2 49151
Description: If "𝐹 is a section of 𝐺 " in a category of small categories (in a universe), then the morphism part of 𝐹 is injective, and the morphism part of 𝐺 is surjective in the image of 𝐹. (Contributed by Zhi Wang, 15-Nov-2025.)
Hypotheses
Ref Expression
cofidval.i 𝐼 = (idfunc𝐷)
cofidval.b 𝐵 = (Base‘𝐷)
cofidval.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
cofidval.k (𝜑𝐾(𝐸 Func 𝐷)𝐿)
cofidval.o (𝜑 → (⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩) = 𝐼)
cofidval.h 𝐻 = (Hom ‘𝐷)
cofidf2.j 𝐽 = (Hom ‘𝐸)
cofidf2.x (𝜑𝑋𝐵)
cofidf2.y (𝜑𝑌𝐵)
Assertion
Ref Expression
cofidf2 (𝜑 → ((𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌)) ∧ ((𝐹𝑋)𝐿(𝐹𝑌)):((𝐹𝑋)𝐽(𝐹𝑌))–onto→(𝑋𝐻𝑌)))

Proof of Theorem cofidf2
StepHypRef Expression
1 cofidval.i . . 3 𝐼 = (idfunc𝐷)
2 cofidval.b . . 3 𝐵 = (Base‘𝐷)
3 cofidval.f . . . 4 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
4 df-br 5092 . . . 4 (𝐹(𝐷 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
53, 4sylib 218 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
6 cofidval.k . . . 4 (𝜑𝐾(𝐸 Func 𝐷)𝐿)
7 df-br 5092 . . . 4 (𝐾(𝐸 Func 𝐷)𝐿 ↔ ⟨𝐾, 𝐿⟩ ∈ (𝐸 Func 𝐷))
86, 7sylib 218 . . 3 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (𝐸 Func 𝐷))
9 cofidval.o . . 3 (𝜑 → (⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩) = 𝐼)
10 cofidval.h . . 3 𝐻 = (Hom ‘𝐷)
11 cofidf2.j . . 3 𝐽 = (Hom ‘𝐸)
12 cofidf2.x . . 3 (𝜑𝑋𝐵)
13 cofidf2.y . . 3 (𝜑𝑌𝐵)
141, 2, 5, 8, 9, 10, 11, 12, 13cofidf2a 49148 . 2 (𝜑 → ((𝑋(2nd ‘⟨𝐹, 𝐺⟩)𝑌):(𝑋𝐻𝑌)–1-1→(((1st ‘⟨𝐹, 𝐺⟩)‘𝑋)𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑌)) ∧ (((1st ‘⟨𝐹, 𝐺⟩)‘𝑋)(2nd ‘⟨𝐾, 𝐿⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑌)):(((1st ‘⟨𝐹, 𝐺⟩)‘𝑋)𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑌))–onto→(𝑋𝐻𝑌)))
153func2nd 49109 . . . . 5 (𝜑 → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
1615oveqd 7363 . . . 4 (𝜑 → (𝑋(2nd ‘⟨𝐹, 𝐺⟩)𝑌) = (𝑋𝐺𝑌))
17 eqidd 2732 . . . 4 (𝜑 → (𝑋𝐻𝑌) = (𝑋𝐻𝑌))
183func1st 49108 . . . . . 6 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
1918fveq1d 6824 . . . . 5 (𝜑 → ((1st ‘⟨𝐹, 𝐺⟩)‘𝑋) = (𝐹𝑋))
2018fveq1d 6824 . . . . 5 (𝜑 → ((1st ‘⟨𝐹, 𝐺⟩)‘𝑌) = (𝐹𝑌))
2119, 20oveq12d 7364 . . . 4 (𝜑 → (((1st ‘⟨𝐹, 𝐺⟩)‘𝑋)𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑌)) = ((𝐹𝑋)𝐽(𝐹𝑌)))
2216, 17, 21f1eq123d 6755 . . 3 (𝜑 → ((𝑋(2nd ‘⟨𝐹, 𝐺⟩)𝑌):(𝑋𝐻𝑌)–1-1→(((1st ‘⟨𝐹, 𝐺⟩)‘𝑋)𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑌)) ↔ (𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌))))
236func2nd 49109 . . . . 5 (𝜑 → (2nd ‘⟨𝐾, 𝐿⟩) = 𝐿)
2423, 19, 20oveq123d 7367 . . . 4 (𝜑 → (((1st ‘⟨𝐹, 𝐺⟩)‘𝑋)(2nd ‘⟨𝐾, 𝐿⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑌)) = ((𝐹𝑋)𝐿(𝐹𝑌)))
2524, 21, 17foeq123d 6756 . . 3 (𝜑 → ((((1st ‘⟨𝐹, 𝐺⟩)‘𝑋)(2nd ‘⟨𝐾, 𝐿⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑌)):(((1st ‘⟨𝐹, 𝐺⟩)‘𝑋)𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑌))–onto→(𝑋𝐻𝑌) ↔ ((𝐹𝑋)𝐿(𝐹𝑌)):((𝐹𝑋)𝐽(𝐹𝑌))–onto→(𝑋𝐻𝑌)))
2622, 25anbi12d 632 . 2 (𝜑 → (((𝑋(2nd ‘⟨𝐹, 𝐺⟩)𝑌):(𝑋𝐻𝑌)–1-1→(((1st ‘⟨𝐹, 𝐺⟩)‘𝑋)𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑌)) ∧ (((1st ‘⟨𝐹, 𝐺⟩)‘𝑋)(2nd ‘⟨𝐾, 𝐿⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑌)):(((1st ‘⟨𝐹, 𝐺⟩)‘𝑋)𝐽((1st ‘⟨𝐹, 𝐺⟩)‘𝑌))–onto→(𝑋𝐻𝑌)) ↔ ((𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌)) ∧ ((𝐹𝑋)𝐿(𝐹𝑌)):((𝐹𝑋)𝐽(𝐹𝑌))–onto→(𝑋𝐻𝑌))))
2714, 26mpbid 232 1 (𝜑 → ((𝑋𝐺𝑌):(𝑋𝐻𝑌)–1-1→((𝐹𝑋)𝐽(𝐹𝑌)) ∧ ((𝐹𝑋)𝐿(𝐹𝑌)):((𝐹𝑋)𝐽(𝐹𝑌))–onto→(𝑋𝐻𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cop 4582   class class class wbr 5091  1-1wf1 6478  ontowfo 6479  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  Basecbs 17117  Hom chom 17169   Func cfunc 17758  idfunccidfu 17759  func ccofu 17760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ixp 8822  df-func 17762  df-idfu 17763  df-cofu 17764
This theorem is referenced by:  cofidfth  49193
  Copyright terms: Public domain W3C validator