Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcoval1 Structured version   Visualization version   GIF version

Theorem itcoval1 45077
Description: A function iterated once. (Contributed by AV, 2-May-2024.)
Assertion
Ref Expression
itcoval1 ((Rel 𝐹𝐹𝑉) → ((IterComp‘𝐹)‘1) = 𝐹)

Proof of Theorem itcoval1
Dummy variables 𝑔 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itcoval 45075 . . . 4 (𝐹𝑉 → (IterComp‘𝐹) = seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))))
21fveq1d 6647 . . 3 (𝐹𝑉 → ((IterComp‘𝐹)‘1) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘1))
32adantl 485 . 2 ((Rel 𝐹𝐹𝑉) → ((IterComp‘𝐹)‘1) = (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘1))
4 nn0uz 12268 . . . 4 0 = (ℤ‘0)
5 0nn0 11900 . . . . 5 0 ∈ ℕ0
65a1i 11 . . . 4 ((Rel 𝐹𝐹𝑉) → 0 ∈ ℕ0)
7 1e0p1 12128 . . . 4 1 = (0 + 1)
81eqcomd 2804 . . . . . . 7 (𝐹𝑉 → seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))) = (IterComp‘𝐹))
98fveq1d 6647 . . . . . 6 (𝐹𝑉 → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘0) = ((IterComp‘𝐹)‘0))
10 itcoval0 45076 . . . . . 6 (𝐹𝑉 → ((IterComp‘𝐹)‘0) = ( I ↾ dom 𝐹))
119, 10eqtrd 2833 . . . . 5 (𝐹𝑉 → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘0) = ( I ↾ dom 𝐹))
1211adantl 485 . . . 4 ((Rel 𝐹𝐹𝑉) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘0) = ( I ↾ dom 𝐹))
13 eqidd 2799 . . . . 5 ((Rel 𝐹𝐹𝑉) → (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))
14 ax-1ne0 10595 . . . . . . . . 9 1 ≠ 0
1514neii 2989 . . . . . . . 8 ¬ 1 = 0
16 eqeq1 2802 . . . . . . . 8 (𝑖 = 1 → (𝑖 = 0 ↔ 1 = 0))
1715, 16mtbiri 330 . . . . . . 7 (𝑖 = 1 → ¬ 𝑖 = 0)
1817iffalsed 4436 . . . . . 6 (𝑖 = 1 → if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹) = 𝐹)
1918adantl 485 . . . . 5 (((Rel 𝐹𝐹𝑉) ∧ 𝑖 = 1) → if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹) = 𝐹)
20 1nn0 11901 . . . . . 6 1 ∈ ℕ0
2120a1i 11 . . . . 5 ((Rel 𝐹𝐹𝑉) → 1 ∈ ℕ0)
22 simpr 488 . . . . 5 ((Rel 𝐹𝐹𝑉) → 𝐹𝑉)
2313, 19, 21, 22fvmptd 6752 . . . 4 ((Rel 𝐹𝐹𝑉) → ((𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹))‘1) = 𝐹)
244, 6, 7, 12, 23seqp1d 13381 . . 3 ((Rel 𝐹𝐹𝑉) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘1) = (( I ↾ dom 𝐹)(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔))𝐹))
25 eqidd 2799 . . . . . 6 (𝐹𝑉 → (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)) = (𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)))
26 coeq2 5693 . . . . . . 7 (𝑔 = ( I ↾ dom 𝐹) → (𝐹𝑔) = (𝐹 ∘ ( I ↾ dom 𝐹)))
2726ad2antrl 727 . . . . . 6 ((𝐹𝑉 ∧ (𝑔 = ( I ↾ dom 𝐹) ∧ 𝑗 = 𝐹)) → (𝐹𝑔) = (𝐹 ∘ ( I ↾ dom 𝐹)))
28 dmexg 7594 . . . . . . 7 (𝐹𝑉 → dom 𝐹 ∈ V)
2928resiexd 6956 . . . . . 6 (𝐹𝑉 → ( I ↾ dom 𝐹) ∈ V)
30 elex 3459 . . . . . 6 (𝐹𝑉𝐹 ∈ V)
31 coexg 7616 . . . . . . 7 ((𝐹𝑉 ∧ ( I ↾ dom 𝐹) ∈ V) → (𝐹 ∘ ( I ↾ dom 𝐹)) ∈ V)
3229, 31mpdan 686 . . . . . 6 (𝐹𝑉 → (𝐹 ∘ ( I ↾ dom 𝐹)) ∈ V)
3325, 27, 29, 30, 32ovmpod 7281 . . . . 5 (𝐹𝑉 → (( I ↾ dom 𝐹)(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔))𝐹) = (𝐹 ∘ ( I ↾ dom 𝐹)))
3433adantl 485 . . . 4 ((Rel 𝐹𝐹𝑉) → (( I ↾ dom 𝐹)(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔))𝐹) = (𝐹 ∘ ( I ↾ dom 𝐹)))
35 coires1 6084 . . . . 5 (𝐹 ∘ ( I ↾ dom 𝐹)) = (𝐹 ↾ dom 𝐹)
36 resdm 5863 . . . . . 6 (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
3736adantr 484 . . . . 5 ((Rel 𝐹𝐹𝑉) → (𝐹 ↾ dom 𝐹) = 𝐹)
3835, 37syl5eq 2845 . . . 4 ((Rel 𝐹𝐹𝑉) → (𝐹 ∘ ( I ↾ dom 𝐹)) = 𝐹)
3934, 38eqtrd 2833 . . 3 ((Rel 𝐹𝐹𝑉) → (( I ↾ dom 𝐹)(𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔))𝐹) = 𝐹)
4024, 39eqtrd 2833 . 2 ((Rel 𝐹𝐹𝑉) → (seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝐹𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝐹), 𝐹)))‘1) = 𝐹)
413, 40eqtrd 2833 1 ((Rel 𝐹𝐹𝑉) → ((IterComp‘𝐹)‘1) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  ifcif 4425  cmpt 5110   I cid 5424  dom cdm 5519  cres 5521  ccom 5523  Rel wrel 5524  cfv 6324  (class class class)co 7135  cmpo 7137  0cc0 10526  1c1 10527  0cn0 11885  seqcseq 13364  IterCompcitco 45071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-seq 13365  df-itco 45073
This theorem is referenced by:  itcoval2  45078  ackvalsuc0val  45101
  Copyright terms: Public domain W3C validator