Step | Hyp | Ref
| Expression |
1 | | itcoval 47818 |
. . . 4
β’ (πΉ β π β (IterCompβπΉ) = seq0((π β V, π β V β¦ (πΉ β π)), (π β β0 β¦ if(π = 0, ( I βΎ dom πΉ), πΉ)))) |
2 | 1 | fveq1d 6892 |
. . 3
β’ (πΉ β π β ((IterCompβπΉ)β1) = (seq0((π β V, π β V β¦ (πΉ β π)), (π β β0 β¦ if(π = 0, ( I βΎ dom πΉ), πΉ)))β1)) |
3 | 2 | adantl 480 |
. 2
β’ ((Rel
πΉ β§ πΉ β π) β ((IterCompβπΉ)β1) = (seq0((π β V, π β V β¦ (πΉ β π)), (π β β0 β¦ if(π = 0, ( I βΎ dom πΉ), πΉ)))β1)) |
4 | | nn0uz 12892 |
. . . 4
β’
β0 = (β€β₯β0) |
5 | | 0nn0 12515 |
. . . . 5
β’ 0 β
β0 |
6 | 5 | a1i 11 |
. . . 4
β’ ((Rel
πΉ β§ πΉ β π) β 0 β
β0) |
7 | | 1e0p1 12747 |
. . . 4
β’ 1 = (0 +
1) |
8 | 1 | eqcomd 2731 |
. . . . . . 7
β’ (πΉ β π β seq0((π β V, π β V β¦ (πΉ β π)), (π β β0 β¦ if(π = 0, ( I βΎ dom πΉ), πΉ))) = (IterCompβπΉ)) |
9 | 8 | fveq1d 6892 |
. . . . . 6
β’ (πΉ β π β (seq0((π β V, π β V β¦ (πΉ β π)), (π β β0 β¦ if(π = 0, ( I βΎ dom πΉ), πΉ)))β0) = ((IterCompβπΉ)β0)) |
10 | | itcoval0 47819 |
. . . . . 6
β’ (πΉ β π β ((IterCompβπΉ)β0) = ( I βΎ dom πΉ)) |
11 | 9, 10 | eqtrd 2765 |
. . . . 5
β’ (πΉ β π β (seq0((π β V, π β V β¦ (πΉ β π)), (π β β0 β¦ if(π = 0, ( I βΎ dom πΉ), πΉ)))β0) = ( I βΎ dom πΉ)) |
12 | 11 | adantl 480 |
. . . 4
β’ ((Rel
πΉ β§ πΉ β π) β (seq0((π β V, π β V β¦ (πΉ β π)), (π β β0 β¦ if(π = 0, ( I βΎ dom πΉ), πΉ)))β0) = ( I βΎ dom πΉ)) |
13 | | eqidd 2726 |
. . . . 5
β’ ((Rel
πΉ β§ πΉ β π) β (π β β0 β¦ if(π = 0, ( I βΎ dom πΉ), πΉ)) = (π β β0 β¦ if(π = 0, ( I βΎ dom πΉ), πΉ))) |
14 | | ax-1ne0 11205 |
. . . . . . . . 9
β’ 1 β
0 |
15 | 14 | neii 2932 |
. . . . . . . 8
β’ Β¬ 1
= 0 |
16 | | eqeq1 2729 |
. . . . . . . 8
β’ (π = 1 β (π = 0 β 1 = 0)) |
17 | 15, 16 | mtbiri 326 |
. . . . . . 7
β’ (π = 1 β Β¬ π = 0) |
18 | 17 | iffalsed 4533 |
. . . . . 6
β’ (π = 1 β if(π = 0, ( I βΎ dom πΉ), πΉ) = πΉ) |
19 | 18 | adantl 480 |
. . . . 5
β’ (((Rel
πΉ β§ πΉ β π) β§ π = 1) β if(π = 0, ( I βΎ dom πΉ), πΉ) = πΉ) |
20 | | 1nn0 12516 |
. . . . . 6
β’ 1 β
β0 |
21 | 20 | a1i 11 |
. . . . 5
β’ ((Rel
πΉ β§ πΉ β π) β 1 β
β0) |
22 | | simpr 483 |
. . . . 5
β’ ((Rel
πΉ β§ πΉ β π) β πΉ β π) |
23 | 13, 19, 21, 22 | fvmptd 7005 |
. . . 4
β’ ((Rel
πΉ β§ πΉ β π) β ((π β β0 β¦ if(π = 0, ( I βΎ dom πΉ), πΉ))β1) = πΉ) |
24 | 4, 6, 7, 12, 23 | seqp1d 14013 |
. . 3
β’ ((Rel
πΉ β§ πΉ β π) β (seq0((π β V, π β V β¦ (πΉ β π)), (π β β0 β¦ if(π = 0, ( I βΎ dom πΉ), πΉ)))β1) = (( I βΎ dom πΉ)(π β V, π β V β¦ (πΉ β π))πΉ)) |
25 | | eqidd 2726 |
. . . . . 6
β’ (πΉ β π β (π β V, π β V β¦ (πΉ β π)) = (π β V, π β V β¦ (πΉ β π))) |
26 | | coeq2 5853 |
. . . . . . 7
β’ (π = ( I βΎ dom πΉ) β (πΉ β π) = (πΉ β ( I βΎ dom πΉ))) |
27 | 26 | ad2antrl 726 |
. . . . . 6
β’ ((πΉ β π β§ (π = ( I βΎ dom πΉ) β§ π = πΉ)) β (πΉ β π) = (πΉ β ( I βΎ dom πΉ))) |
28 | | dmexg 7905 |
. . . . . . 7
β’ (πΉ β π β dom πΉ β V) |
29 | 28 | resiexd 7222 |
. . . . . 6
β’ (πΉ β π β ( I βΎ dom πΉ) β V) |
30 | | elex 3482 |
. . . . . 6
β’ (πΉ β π β πΉ β V) |
31 | | coexg 7933 |
. . . . . . 7
β’ ((πΉ β π β§ ( I βΎ dom πΉ) β V) β (πΉ β ( I βΎ dom πΉ)) β V) |
32 | 29, 31 | mpdan 685 |
. . . . . 6
β’ (πΉ β π β (πΉ β ( I βΎ dom πΉ)) β V) |
33 | 25, 27, 29, 30, 32 | ovmpod 7568 |
. . . . 5
β’ (πΉ β π β (( I βΎ dom πΉ)(π β V, π β V β¦ (πΉ β π))πΉ) = (πΉ β ( I βΎ dom πΉ))) |
34 | 33 | adantl 480 |
. . . 4
β’ ((Rel
πΉ β§ πΉ β π) β (( I βΎ dom πΉ)(π β V, π β V β¦ (πΉ β π))πΉ) = (πΉ β ( I βΎ dom πΉ))) |
35 | | coires1 6261 |
. . . . 5
β’ (πΉ β ( I βΎ dom πΉ)) = (πΉ βΎ dom πΉ) |
36 | | resdm 6023 |
. . . . . 6
β’ (Rel
πΉ β (πΉ βΎ dom πΉ) = πΉ) |
37 | 36 | adantr 479 |
. . . . 5
β’ ((Rel
πΉ β§ πΉ β π) β (πΉ βΎ dom πΉ) = πΉ) |
38 | 35, 37 | eqtrid 2777 |
. . . 4
β’ ((Rel
πΉ β§ πΉ β π) β (πΉ β ( I βΎ dom πΉ)) = πΉ) |
39 | 34, 38 | eqtrd 2765 |
. . 3
β’ ((Rel
πΉ β§ πΉ β π) β (( I βΎ dom πΉ)(π β V, π β V β¦ (πΉ β π))πΉ) = πΉ) |
40 | 24, 39 | eqtrd 2765 |
. 2
β’ ((Rel
πΉ β§ πΉ β π) β (seq0((π β V, π β V β¦ (πΉ β π)), (π β β0 β¦ if(π = 0, ( I βΎ dom πΉ), πΉ)))β1) = πΉ) |
41 | 3, 40 | eqtrd 2765 |
1
β’ ((Rel
πΉ β§ πΉ β π) β ((IterCompβπΉ)β1) = πΉ) |