Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mzpresrename | Structured version Visualization version GIF version |
Description: A polynomial is a polynomial over all larger index sets. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.) |
Ref | Expression |
---|---|
mzpresrename | ⊢ ((𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ↾ 𝑉))) ∈ (mzPoly‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coires1 6168 | . . . 4 ⊢ (𝑥 ∘ ( I ↾ 𝑉)) = (𝑥 ↾ 𝑉) | |
2 | 1 | fveq2i 6777 | . . 3 ⊢ (𝐹‘(𝑥 ∘ ( I ↾ 𝑉))) = (𝐹‘(𝑥 ↾ 𝑉)) |
3 | 2 | mpteq2i 5179 | . 2 ⊢ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ∘ ( I ↾ 𝑉)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ↾ 𝑉))) |
4 | simp1 1135 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ (mzPoly‘𝑉)) → 𝑊 ∈ V) | |
5 | simp3 1137 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ (mzPoly‘𝑉)) → 𝐹 ∈ (mzPoly‘𝑉)) | |
6 | f1oi 6754 | . . . . . 6 ⊢ ( I ↾ 𝑉):𝑉–1-1-onto→𝑉 | |
7 | f1of 6716 | . . . . . 6 ⊢ (( I ↾ 𝑉):𝑉–1-1-onto→𝑉 → ( I ↾ 𝑉):𝑉⟶𝑉) | |
8 | 6, 7 | ax-mp 5 | . . . . 5 ⊢ ( I ↾ 𝑉):𝑉⟶𝑉 |
9 | fss 6617 | . . . . 5 ⊢ ((( I ↾ 𝑉):𝑉⟶𝑉 ∧ 𝑉 ⊆ 𝑊) → ( I ↾ 𝑉):𝑉⟶𝑊) | |
10 | 8, 9 | mpan 687 | . . . 4 ⊢ (𝑉 ⊆ 𝑊 → ( I ↾ 𝑉):𝑉⟶𝑊) |
11 | 10 | 3ad2ant2 1133 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ (mzPoly‘𝑉)) → ( I ↾ 𝑉):𝑉⟶𝑊) |
12 | mzprename 40571 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ( I ↾ 𝑉):𝑉⟶𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ∘ ( I ↾ 𝑉)))) ∈ (mzPoly‘𝑊)) | |
13 | 4, 5, 11, 12 | syl3anc 1370 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ∘ ( I ↾ 𝑉)))) ∈ (mzPoly‘𝑊)) |
14 | 3, 13 | eqeltrrid 2844 | 1 ⊢ ((𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ↾ 𝑉))) ∈ (mzPoly‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 ↦ cmpt 5157 I cid 5488 ↾ cres 5591 ∘ ccom 5593 ⟶wf 6429 –1-1-onto→wf1o 6432 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 ℤcz 12319 mzPolycmzp 40544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-mzpcl 40545 df-mzp 40546 |
This theorem is referenced by: mzpcompact2lem 40573 diophin 40594 rabdiophlem2 40624 |
Copyright terms: Public domain | W3C validator |