![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mzpresrename | Structured version Visualization version GIF version |
Description: A polynomial is a polynomial over all larger index sets. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.) |
Ref | Expression |
---|---|
mzpresrename | ⊢ ((𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ↾ 𝑉))) ∈ (mzPoly‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coires1 6286 | . . . 4 ⊢ (𝑥 ∘ ( I ↾ 𝑉)) = (𝑥 ↾ 𝑉) | |
2 | 1 | fveq2i 6910 | . . 3 ⊢ (𝐹‘(𝑥 ∘ ( I ↾ 𝑉))) = (𝐹‘(𝑥 ↾ 𝑉)) |
3 | 2 | mpteq2i 5253 | . 2 ⊢ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ∘ ( I ↾ 𝑉)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ↾ 𝑉))) |
4 | simp1 1135 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ (mzPoly‘𝑉)) → 𝑊 ∈ V) | |
5 | simp3 1137 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ (mzPoly‘𝑉)) → 𝐹 ∈ (mzPoly‘𝑉)) | |
6 | f1oi 6887 | . . . . . 6 ⊢ ( I ↾ 𝑉):𝑉–1-1-onto→𝑉 | |
7 | f1of 6849 | . . . . . 6 ⊢ (( I ↾ 𝑉):𝑉–1-1-onto→𝑉 → ( I ↾ 𝑉):𝑉⟶𝑉) | |
8 | 6, 7 | ax-mp 5 | . . . . 5 ⊢ ( I ↾ 𝑉):𝑉⟶𝑉 |
9 | fss 6753 | . . . . 5 ⊢ ((( I ↾ 𝑉):𝑉⟶𝑉 ∧ 𝑉 ⊆ 𝑊) → ( I ↾ 𝑉):𝑉⟶𝑊) | |
10 | 8, 9 | mpan 690 | . . . 4 ⊢ (𝑉 ⊆ 𝑊 → ( I ↾ 𝑉):𝑉⟶𝑊) |
11 | 10 | 3ad2ant2 1133 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ (mzPoly‘𝑉)) → ( I ↾ 𝑉):𝑉⟶𝑊) |
12 | mzprename 42737 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ( I ↾ 𝑉):𝑉⟶𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ∘ ( I ↾ 𝑉)))) ∈ (mzPoly‘𝑊)) | |
13 | 4, 5, 11, 12 | syl3anc 1370 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ∘ ( I ↾ 𝑉)))) ∈ (mzPoly‘𝑊)) |
14 | 3, 13 | eqeltrrid 2844 | 1 ⊢ ((𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ↾ 𝑉))) ∈ (mzPoly‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 ↦ cmpt 5231 I cid 5582 ↾ cres 5691 ∘ ccom 5693 ⟶wf 6559 –1-1-onto→wf1o 6562 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 ℤcz 12611 mzPolycmzp 42710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-mzpcl 42711 df-mzp 42712 |
This theorem is referenced by: mzpcompact2lem 42739 diophin 42760 rabdiophlem2 42790 |
Copyright terms: Public domain | W3C validator |