| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mzpresrename | Structured version Visualization version GIF version | ||
| Description: A polynomial is a polynomial over all larger index sets. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.) |
| Ref | Expression |
|---|---|
| mzpresrename | ⊢ ((𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ↾ 𝑉))) ∈ (mzPoly‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coires1 6217 | . . . 4 ⊢ (𝑥 ∘ ( I ↾ 𝑉)) = (𝑥 ↾ 𝑉) | |
| 2 | 1 | fveq2i 6831 | . . 3 ⊢ (𝐹‘(𝑥 ∘ ( I ↾ 𝑉))) = (𝐹‘(𝑥 ↾ 𝑉)) |
| 3 | 2 | mpteq2i 5189 | . 2 ⊢ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ∘ ( I ↾ 𝑉)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ↾ 𝑉))) |
| 4 | simp1 1136 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ (mzPoly‘𝑉)) → 𝑊 ∈ V) | |
| 5 | simp3 1138 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ (mzPoly‘𝑉)) → 𝐹 ∈ (mzPoly‘𝑉)) | |
| 6 | f1oi 6806 | . . . . . 6 ⊢ ( I ↾ 𝑉):𝑉–1-1-onto→𝑉 | |
| 7 | f1of 6768 | . . . . . 6 ⊢ (( I ↾ 𝑉):𝑉–1-1-onto→𝑉 → ( I ↾ 𝑉):𝑉⟶𝑉) | |
| 8 | 6, 7 | ax-mp 5 | . . . . 5 ⊢ ( I ↾ 𝑉):𝑉⟶𝑉 |
| 9 | fss 6672 | . . . . 5 ⊢ ((( I ↾ 𝑉):𝑉⟶𝑉 ∧ 𝑉 ⊆ 𝑊) → ( I ↾ 𝑉):𝑉⟶𝑊) | |
| 10 | 8, 9 | mpan 690 | . . . 4 ⊢ (𝑉 ⊆ 𝑊 → ( I ↾ 𝑉):𝑉⟶𝑊) |
| 11 | 10 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ (mzPoly‘𝑉)) → ( I ↾ 𝑉):𝑉⟶𝑊) |
| 12 | mzprename 42866 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ( I ↾ 𝑉):𝑉⟶𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ∘ ( I ↾ 𝑉)))) ∈ (mzPoly‘𝑊)) | |
| 13 | 4, 5, 11, 12 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ∘ ( I ↾ 𝑉)))) ∈ (mzPoly‘𝑊)) |
| 14 | 3, 13 | eqeltrrid 2838 | 1 ⊢ ((𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ↾ 𝑉))) ∈ (mzPoly‘𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 ↦ cmpt 5174 I cid 5513 ↾ cres 5621 ∘ ccom 5623 ⟶wf 6482 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7352 ↑m cmap 8756 ℤcz 12475 mzPolycmzp 42839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-mzpcl 42840 df-mzp 42841 |
| This theorem is referenced by: mzpcompact2lem 42868 diophin 42889 rabdiophlem2 42919 |
| Copyright terms: Public domain | W3C validator |