| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mzpresrename | Structured version Visualization version GIF version | ||
| Description: A polynomial is a polynomial over all larger index sets. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.) |
| Ref | Expression |
|---|---|
| mzpresrename | ⊢ ((𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ↾ 𝑉))) ∈ (mzPoly‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coires1 6217 | . . . 4 ⊢ (𝑥 ∘ ( I ↾ 𝑉)) = (𝑥 ↾ 𝑉) | |
| 2 | 1 | fveq2i 6829 | . . 3 ⊢ (𝐹‘(𝑥 ∘ ( I ↾ 𝑉))) = (𝐹‘(𝑥 ↾ 𝑉)) |
| 3 | 2 | mpteq2i 5191 | . 2 ⊢ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ∘ ( I ↾ 𝑉)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ↾ 𝑉))) |
| 4 | simp1 1136 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ (mzPoly‘𝑉)) → 𝑊 ∈ V) | |
| 5 | simp3 1138 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ (mzPoly‘𝑉)) → 𝐹 ∈ (mzPoly‘𝑉)) | |
| 6 | f1oi 6806 | . . . . . 6 ⊢ ( I ↾ 𝑉):𝑉–1-1-onto→𝑉 | |
| 7 | f1of 6768 | . . . . . 6 ⊢ (( I ↾ 𝑉):𝑉–1-1-onto→𝑉 → ( I ↾ 𝑉):𝑉⟶𝑉) | |
| 8 | 6, 7 | ax-mp 5 | . . . . 5 ⊢ ( I ↾ 𝑉):𝑉⟶𝑉 |
| 9 | fss 6672 | . . . . 5 ⊢ ((( I ↾ 𝑉):𝑉⟶𝑉 ∧ 𝑉 ⊆ 𝑊) → ( I ↾ 𝑉):𝑉⟶𝑊) | |
| 10 | 8, 9 | mpan 690 | . . . 4 ⊢ (𝑉 ⊆ 𝑊 → ( I ↾ 𝑉):𝑉⟶𝑊) |
| 11 | 10 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ (mzPoly‘𝑉)) → ( I ↾ 𝑉):𝑉⟶𝑊) |
| 12 | mzprename 42722 | . . 3 ⊢ ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ( I ↾ 𝑉):𝑉⟶𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ∘ ( I ↾ 𝑉)))) ∈ (mzPoly‘𝑊)) | |
| 13 | 4, 5, 11, 12 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ∘ ( I ↾ 𝑉)))) ∈ (mzPoly‘𝑊)) |
| 14 | 3, 13 | eqeltrrid 2833 | 1 ⊢ ((𝑊 ∈ V ∧ 𝑉 ⊆ 𝑊 ∧ 𝐹 ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥 ↾ 𝑉))) ∈ (mzPoly‘𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 ↦ cmpt 5176 I cid 5517 ↾ cres 5625 ∘ ccom 5627 ⟶wf 6482 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 ℤcz 12489 mzPolycmzp 42695 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-mzpcl 42696 df-mzp 42697 |
| This theorem is referenced by: mzpcompact2lem 42724 diophin 42745 rabdiophlem2 42775 |
| Copyright terms: Public domain | W3C validator |