MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfeqd Structured version   Visualization version   GIF version

Theorem comfeqd 17724
Description: Condition for two categories with the same hom-sets to have the same composition. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfeqd.1 (𝜑 → (comp‘𝐶) = (comp‘𝐷))
comfeqd.2 (𝜑 → (Homf𝐶) = (Homf𝐷))
Assertion
Ref Expression
comfeqd (𝜑 → (compf𝐶) = (compf𝐷))

Proof of Theorem comfeqd
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 comfeqd.1 . . . . . . . . 9 (𝜑 → (comp‘𝐶) = (comp‘𝐷))
21oveqd 7427 . . . . . . . 8 (𝜑 → (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧) = (⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧))
32oveqd 7427 . . . . . . 7 (𝜑 → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓))
43ralrimivw 3137 . . . . . 6 (𝜑 → ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓))
54ralrimivw 3137 . . . . 5 (𝜑 → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓))
65ralrimivw 3137 . . . 4 (𝜑 → ∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓))
76ralrimivw 3137 . . 3 (𝜑 → ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓))
87ralrimivw 3137 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓))
9 eqid 2736 . . 3 (comp‘𝐶) = (comp‘𝐶)
10 eqid 2736 . . 3 (comp‘𝐷) = (comp‘𝐷)
11 eqid 2736 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
12 eqidd 2737 . . 3 (𝜑 → (Base‘𝐶) = (Base‘𝐶))
13 comfeqd.2 . . . 4 (𝜑 → (Homf𝐶) = (Homf𝐷))
1413homfeqbas 17713 . . 3 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
159, 10, 11, 12, 14, 13comfeq 17723 . 2 (𝜑 → ((compf𝐶) = (compf𝐷) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓)))
168, 15mpbird 257 1 (𝜑 → (compf𝐶) = (compf𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wral 3052  cop 4612  cfv 6536  (class class class)co 7410  Basecbs 17233  Hom chom 17287  compcco 17288  Homf chomf 17683  compfccomf 17684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-homf 17687  df-comf 17688
This theorem is referenced by:  fullresc  17869
  Copyright terms: Public domain W3C validator