MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfeqd Structured version   Visualization version   GIF version

Theorem comfeqd 17675
Description: Condition for two categories with the same hom-sets to have the same composition. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfeqd.1 (𝜑 → (comp‘𝐶) = (comp‘𝐷))
comfeqd.2 (𝜑 → (Homf𝐶) = (Homf𝐷))
Assertion
Ref Expression
comfeqd (𝜑 → (compf𝐶) = (compf𝐷))

Proof of Theorem comfeqd
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 comfeqd.1 . . . . . . . . 9 (𝜑 → (comp‘𝐶) = (comp‘𝐷))
21oveqd 7407 . . . . . . . 8 (𝜑 → (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧) = (⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧))
32oveqd 7407 . . . . . . 7 (𝜑 → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓))
43ralrimivw 3130 . . . . . 6 (𝜑 → ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓))
54ralrimivw 3130 . . . . 5 (𝜑 → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓))
65ralrimivw 3130 . . . 4 (𝜑 → ∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓))
76ralrimivw 3130 . . 3 (𝜑 → ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓))
87ralrimivw 3130 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓))
9 eqid 2730 . . 3 (comp‘𝐶) = (comp‘𝐶)
10 eqid 2730 . . 3 (comp‘𝐷) = (comp‘𝐷)
11 eqid 2730 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
12 eqidd 2731 . . 3 (𝜑 → (Base‘𝐶) = (Base‘𝐶))
13 comfeqd.2 . . . 4 (𝜑 → (Homf𝐶) = (Homf𝐷))
1413homfeqbas 17664 . . 3 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
159, 10, 11, 12, 14, 13comfeq 17674 . 2 (𝜑 → ((compf𝐶) = (compf𝐷) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓)))
168, 15mpbird 257 1 (𝜑 → (compf𝐶) = (compf𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wral 3045  cop 4598  cfv 6514  (class class class)co 7390  Basecbs 17186  Hom chom 17238  compcco 17239  Homf chomf 17634  compfccomf 17635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-homf 17638  df-comf 17639
This theorem is referenced by:  fullresc  17820
  Copyright terms: Public domain W3C validator