![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > comfeqd | Structured version Visualization version GIF version |
Description: Condition for two categories with the same hom-sets to have the same composition. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
comfeqd.1 | ⊢ (𝜑 → (comp‘𝐶) = (comp‘𝐷)) |
comfeqd.2 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
Ref | Expression |
---|---|
comfeqd | ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comfeqd.1 | . . . . . . . . 9 ⊢ (𝜑 → (comp‘𝐶) = (comp‘𝐷)) | |
2 | 1 | oveqd 7428 | . . . . . . . 8 ⊢ (𝜑 → (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧) = (⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)) |
3 | 2 | oveqd 7428 | . . . . . . 7 ⊢ (𝜑 → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓)) |
4 | 3 | ralrimivw 3150 | . . . . . 6 ⊢ (𝜑 → ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓)) |
5 | 4 | ralrimivw 3150 | . . . . 5 ⊢ (𝜑 → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓)) |
6 | 5 | ralrimivw 3150 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓)) |
7 | 6 | ralrimivw 3150 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓)) |
8 | 7 | ralrimivw 3150 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓)) |
9 | eqid 2732 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
10 | eqid 2732 | . . 3 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
11 | eqid 2732 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
12 | eqidd 2733 | . . 3 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐶)) | |
13 | comfeqd.2 | . . . 4 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
14 | 13 | homfeqbas 17644 | . . 3 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
15 | 9, 10, 11, 12, 14, 13 | comfeq 17654 | . 2 ⊢ (𝜑 → ((compf‘𝐶) = (compf‘𝐷) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓))) |
16 | 8, 15 | mpbird 256 | 1 ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∀wral 3061 ⟨cop 4634 ‘cfv 6543 (class class class)co 7411 Basecbs 17148 Hom chom 17212 compcco 17213 Homf chomf 17614 compfccomf 17615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-homf 17618 df-comf 17619 |
This theorem is referenced by: fullresc 17805 |
Copyright terms: Public domain | W3C validator |