Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > comfeqd | Structured version Visualization version GIF version |
Description: Condition for two categories with the same hom-sets to have the same composition. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
comfeqd.1 | ⊢ (𝜑 → (comp‘𝐶) = (comp‘𝐷)) |
comfeqd.2 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
Ref | Expression |
---|---|
comfeqd | ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comfeqd.1 | . . . . . . . . 9 ⊢ (𝜑 → (comp‘𝐶) = (comp‘𝐷)) | |
2 | 1 | oveqd 7167 | . . . . . . . 8 ⊢ (𝜑 → (〈𝑥, 𝑦〉(comp‘𝐶)𝑧) = (〈𝑥, 𝑦〉(comp‘𝐷)𝑧)) |
3 | 2 | oveqd 7167 | . . . . . . 7 ⊢ (𝜑 → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓)) |
4 | 3 | ralrimivw 3114 | . . . . . 6 ⊢ (𝜑 → ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓)) |
5 | 4 | ralrimivw 3114 | . . . . 5 ⊢ (𝜑 → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓)) |
6 | 5 | ralrimivw 3114 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓)) |
7 | 6 | ralrimivw 3114 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓)) |
8 | 7 | ralrimivw 3114 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓)) |
9 | eqid 2758 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
10 | eqid 2758 | . . 3 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
11 | eqid 2758 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
12 | eqidd 2759 | . . 3 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐶)) | |
13 | comfeqd.2 | . . . 4 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
14 | 13 | homfeqbas 17024 | . . 3 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
15 | 9, 10, 11, 12, 14, 13 | comfeq 17034 | . 2 ⊢ (𝜑 → ((compf‘𝐶) = (compf‘𝐷) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓))) |
16 | 8, 15 | mpbird 260 | 1 ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∀wral 3070 〈cop 4528 ‘cfv 6335 (class class class)co 7150 Basecbs 16541 Hom chom 16634 compcco 16635 Homf chomf 16995 compfccomf 16996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-1st 7693 df-2nd 7694 df-homf 16999 df-comf 17000 |
This theorem is referenced by: fullresc 17180 |
Copyright terms: Public domain | W3C validator |