| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > comfeqd | Structured version Visualization version GIF version | ||
| Description: Condition for two categories with the same hom-sets to have the same composition. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| comfeqd.1 | ⊢ (𝜑 → (comp‘𝐶) = (comp‘𝐷)) |
| comfeqd.2 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
| Ref | Expression |
|---|---|
| comfeqd | ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comfeqd.1 | . . . . . . . . 9 ⊢ (𝜑 → (comp‘𝐶) = (comp‘𝐷)) | |
| 2 | 1 | oveqd 7386 | . . . . . . . 8 ⊢ (𝜑 → (〈𝑥, 𝑦〉(comp‘𝐶)𝑧) = (〈𝑥, 𝑦〉(comp‘𝐷)𝑧)) |
| 3 | 2 | oveqd 7386 | . . . . . . 7 ⊢ (𝜑 → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓)) |
| 4 | 3 | ralrimivw 3129 | . . . . . 6 ⊢ (𝜑 → ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓)) |
| 5 | 4 | ralrimivw 3129 | . . . . 5 ⊢ (𝜑 → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓)) |
| 6 | 5 | ralrimivw 3129 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓)) |
| 7 | 6 | ralrimivw 3129 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓)) |
| 8 | 7 | ralrimivw 3129 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓)) |
| 9 | eqid 2729 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 10 | eqid 2729 | . . 3 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
| 11 | eqid 2729 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 12 | eqidd 2730 | . . 3 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐶)) | |
| 13 | comfeqd.2 | . . . 4 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
| 14 | 13 | homfeqbas 17633 | . . 3 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
| 15 | 9, 10, 11, 12, 14, 13 | comfeq 17643 | . 2 ⊢ (𝜑 → ((compf‘𝐶) = (compf‘𝐷) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓))) |
| 16 | 8, 15 | mpbird 257 | 1 ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∀wral 3044 〈cop 4591 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 Hom chom 17207 compcco 17208 Homf chomf 17603 compfccomf 17604 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-homf 17607 df-comf 17608 |
| This theorem is referenced by: fullresc 17789 |
| Copyright terms: Public domain | W3C validator |