| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > comfeqd | Structured version Visualization version GIF version | ||
| Description: Condition for two categories with the same hom-sets to have the same composition. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| comfeqd.1 | ⊢ (𝜑 → (comp‘𝐶) = (comp‘𝐷)) |
| comfeqd.2 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
| Ref | Expression |
|---|---|
| comfeqd | ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comfeqd.1 | . . . . . . . . 9 ⊢ (𝜑 → (comp‘𝐶) = (comp‘𝐷)) | |
| 2 | 1 | oveqd 7427 | . . . . . . . 8 ⊢ (𝜑 → (〈𝑥, 𝑦〉(comp‘𝐶)𝑧) = (〈𝑥, 𝑦〉(comp‘𝐷)𝑧)) |
| 3 | 2 | oveqd 7427 | . . . . . . 7 ⊢ (𝜑 → (𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓)) |
| 4 | 3 | ralrimivw 3137 | . . . . . 6 ⊢ (𝜑 → ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓)) |
| 5 | 4 | ralrimivw 3137 | . . . . 5 ⊢ (𝜑 → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓)) |
| 6 | 5 | ralrimivw 3137 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓)) |
| 7 | 6 | ralrimivw 3137 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓)) |
| 8 | 7 | ralrimivw 3137 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓)) |
| 9 | eqid 2736 | . . 3 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 10 | eqid 2736 | . . 3 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
| 11 | eqid 2736 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 12 | eqidd 2737 | . . 3 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐶)) | |
| 13 | comfeqd.2 | . . . 4 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
| 14 | 13 | homfeqbas 17713 | . . 3 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
| 15 | 9, 10, 11, 12, 14, 13 | comfeq 17723 | . 2 ⊢ (𝜑 → ((compf‘𝐶) = (compf‘𝐷) ↔ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘𝐷)𝑧)𝑓))) |
| 16 | 8, 15 | mpbird 257 | 1 ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∀wral 3052 〈cop 4612 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 Hom chom 17287 compcco 17288 Homf chomf 17683 compfccomf 17684 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-homf 17687 df-comf 17688 |
| This theorem is referenced by: fullresc 17869 |
| Copyright terms: Public domain | W3C validator |