![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fullresc | Structured version Visualization version GIF version |
Description: The category formed by structure restriction is the same as the category restriction. (Contributed by Mario Carneiro, 5-Jan-2017.) |
Ref | Expression |
---|---|
fullsubc.b | ⊢ 𝐵 = (Base‘𝐶) |
fullsubc.h | ⊢ 𝐻 = (Homf ‘𝐶) |
fullsubc.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
fullsubc.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
fullsubc.d | ⊢ 𝐷 = (𝐶 ↾s 𝑆) |
fullsubc.e | ⊢ 𝐸 = (𝐶 ↾cat (𝐻 ↾ (𝑆 × 𝑆))) |
Ref | Expression |
---|---|
fullresc | ⊢ (𝜑 → ((Homf ‘𝐷) = (Homf ‘𝐸) ∧ (compf‘𝐷) = (compf‘𝐸))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fullsubc.h | . . . . . 6 ⊢ 𝐻 = (Homf ‘𝐶) | |
2 | fullsubc.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
3 | eqid 2826 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
4 | fullsubc.s | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
5 | 4 | adantr 474 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑆 ⊆ 𝐵) |
6 | simprl 789 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ 𝑆) | |
7 | 5, 6 | sseldd 3829 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ 𝐵) |
8 | simprr 791 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ 𝑆) | |
9 | 5, 8 | sseldd 3829 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ 𝐵) |
10 | 1, 2, 3, 7, 9 | homfval 16705 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐶)𝑦)) |
11 | 6, 8 | ovresd 7062 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥𝐻𝑦)) |
12 | fullsubc.e | . . . . . . . 8 ⊢ 𝐸 = (𝐶 ↾cat (𝐻 ↾ (𝑆 × 𝑆))) | |
13 | fullsubc.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
14 | 1, 2 | homffn 16706 | . . . . . . . . 9 ⊢ 𝐻 Fn (𝐵 × 𝐵) |
15 | xpss12 5358 | . . . . . . . . . 10 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝐵) → (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵)) | |
16 | 4, 4, 15 | syl2anc 581 | . . . . . . . . 9 ⊢ (𝜑 → (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵)) |
17 | fnssres 6238 | . . . . . . . . 9 ⊢ ((𝐻 Fn (𝐵 × 𝐵) ∧ (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵)) → (𝐻 ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆)) | |
18 | 14, 16, 17 | sylancr 583 | . . . . . . . 8 ⊢ (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆)) |
19 | 12, 2, 13, 18, 4 | reschom 16843 | . . . . . . 7 ⊢ (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) = (Hom ‘𝐸)) |
20 | 19 | oveqdr 6934 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥(Hom ‘𝐸)𝑦)) |
21 | 11, 20 | eqtr3d 2864 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐸)𝑦)) |
22 | fullsubc.d | . . . . . . . . . 10 ⊢ 𝐷 = (𝐶 ↾s 𝑆) | |
23 | 22, 2 | ressbas2 16295 | . . . . . . . . 9 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 = (Base‘𝐷)) |
24 | 4, 23 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 = (Base‘𝐷)) |
25 | fvex 6447 | . . . . . . . 8 ⊢ (Base‘𝐷) ∈ V | |
26 | 24, 25 | syl6eqel 2915 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ V) |
27 | 22, 3 | resshom 16432 | . . . . . . 7 ⊢ (𝑆 ∈ V → (Hom ‘𝐶) = (Hom ‘𝐷)) |
28 | 26, 27 | syl 17 | . . . . . 6 ⊢ (𝜑 → (Hom ‘𝐶) = (Hom ‘𝐷)) |
29 | 28 | oveqdr 6934 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦)) |
30 | 10, 21, 29 | 3eqtr3rd 2871 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐸)𝑦)) |
31 | 30 | ralrimivva 3181 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐸)𝑦)) |
32 | eqid 2826 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
33 | eqid 2826 | . . . 4 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
34 | 12, 2, 13, 18, 4 | rescbas 16842 | . . . 4 ⊢ (𝜑 → 𝑆 = (Base‘𝐸)) |
35 | 32, 33, 24, 34 | homfeq 16707 | . . 3 ⊢ (𝜑 → ((Homf ‘𝐷) = (Homf ‘𝐸) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐸)𝑦))) |
36 | 31, 35 | mpbird 249 | . 2 ⊢ (𝜑 → (Homf ‘𝐷) = (Homf ‘𝐸)) |
37 | eqid 2826 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
38 | 22, 37 | ressco 16433 | . . . . 5 ⊢ (𝑆 ∈ V → (comp‘𝐶) = (comp‘𝐷)) |
39 | 26, 38 | syl 17 | . . . 4 ⊢ (𝜑 → (comp‘𝐶) = (comp‘𝐷)) |
40 | 12, 2, 13, 18, 4, 37 | rescco 16845 | . . . 4 ⊢ (𝜑 → (comp‘𝐶) = (comp‘𝐸)) |
41 | 39, 40 | eqtr3d 2864 | . . 3 ⊢ (𝜑 → (comp‘𝐷) = (comp‘𝐸)) |
42 | 41, 36 | comfeqd 16720 | . 2 ⊢ (𝜑 → (compf‘𝐷) = (compf‘𝐸)) |
43 | 36, 42 | jca 509 | 1 ⊢ (𝜑 → ((Homf ‘𝐷) = (Homf ‘𝐸) ∧ (compf‘𝐷) = (compf‘𝐸))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ∀wral 3118 Vcvv 3415 ⊆ wss 3799 × cxp 5341 ↾ cres 5345 Fn wfn 6119 ‘cfv 6124 (class class class)co 6906 Basecbs 16223 ↾s cress 16224 Hom chom 16317 compcco 16318 Catccat 16678 Homf chomf 16680 compfccomf 16681 ↾cat cresc 16821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-1st 7429 df-2nd 7430 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-er 8010 df-en 8224 df-dom 8225 df-sdom 8226 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-nn 11352 df-2 11415 df-3 11416 df-4 11417 df-5 11418 df-6 11419 df-7 11420 df-8 11421 df-9 11422 df-n0 11620 df-z 11706 df-dec 11823 df-ndx 16226 df-slot 16227 df-base 16229 df-sets 16230 df-ress 16231 df-hom 16330 df-cco 16331 df-homf 16684 df-comf 16685 df-resc 16824 |
This theorem is referenced by: resscat 16865 funcres2c 16914 ressffth 16951 funcsetcres2 17096 |
Copyright terms: Public domain | W3C validator |