| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fullresc | Structured version Visualization version GIF version | ||
| Description: The category formed by structure restriction is the same as the category restriction. (Contributed by Mario Carneiro, 5-Jan-2017.) |
| Ref | Expression |
|---|---|
| fullsubc.b | ⊢ 𝐵 = (Base‘𝐶) |
| fullsubc.h | ⊢ 𝐻 = (Homf ‘𝐶) |
| fullsubc.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| fullsubc.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| fullsubc.d | ⊢ 𝐷 = (𝐶 ↾s 𝑆) |
| fullsubc.e | ⊢ 𝐸 = (𝐶 ↾cat (𝐻 ↾ (𝑆 × 𝑆))) |
| Ref | Expression |
|---|---|
| fullresc | ⊢ (𝜑 → ((Homf ‘𝐷) = (Homf ‘𝐸) ∧ (compf‘𝐷) = (compf‘𝐸))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fullsubc.h | . . . . . 6 ⊢ 𝐻 = (Homf ‘𝐶) | |
| 2 | fullsubc.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | eqid 2736 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 4 | fullsubc.s | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
| 5 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑆 ⊆ 𝐵) |
| 6 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ 𝑆) | |
| 7 | 5, 6 | sseldd 3964 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ 𝐵) |
| 8 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ 𝑆) | |
| 9 | 5, 8 | sseldd 3964 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ 𝐵) |
| 10 | 1, 2, 3, 7, 9 | homfval 17709 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐶)𝑦)) |
| 11 | 6, 8 | ovresd 7579 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥𝐻𝑦)) |
| 12 | fullsubc.e | . . . . . . . 8 ⊢ 𝐸 = (𝐶 ↾cat (𝐻 ↾ (𝑆 × 𝑆))) | |
| 13 | fullsubc.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 14 | 1, 2 | homffn 17710 | . . . . . . . . 9 ⊢ 𝐻 Fn (𝐵 × 𝐵) |
| 15 | xpss12 5674 | . . . . . . . . . 10 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝐵) → (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵)) | |
| 16 | 4, 4, 15 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵)) |
| 17 | fnssres 6666 | . . . . . . . . 9 ⊢ ((𝐻 Fn (𝐵 × 𝐵) ∧ (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵)) → (𝐻 ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆)) | |
| 18 | 14, 16, 17 | sylancr 587 | . . . . . . . 8 ⊢ (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆)) |
| 19 | 12, 2, 13, 18, 4 | reschom 17848 | . . . . . . 7 ⊢ (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) = (Hom ‘𝐸)) |
| 20 | 19 | oveqdr 7438 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥(Hom ‘𝐸)𝑦)) |
| 21 | 11, 20 | eqtr3d 2773 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐸)𝑦)) |
| 22 | fullsubc.d | . . . . . . . . . 10 ⊢ 𝐷 = (𝐶 ↾s 𝑆) | |
| 23 | 22, 2 | ressbas2 17264 | . . . . . . . . 9 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 = (Base‘𝐷)) |
| 24 | 4, 23 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 = (Base‘𝐷)) |
| 25 | fvex 6894 | . . . . . . . 8 ⊢ (Base‘𝐷) ∈ V | |
| 26 | 24, 25 | eqeltrdi 2843 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ V) |
| 27 | 22, 3 | resshom 17437 | . . . . . . 7 ⊢ (𝑆 ∈ V → (Hom ‘𝐶) = (Hom ‘𝐷)) |
| 28 | 26, 27 | syl 17 | . . . . . 6 ⊢ (𝜑 → (Hom ‘𝐶) = (Hom ‘𝐷)) |
| 29 | 28 | oveqdr 7438 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦)) |
| 30 | 10, 21, 29 | 3eqtr3rd 2780 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐸)𝑦)) |
| 31 | 30 | ralrimivva 3188 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐸)𝑦)) |
| 32 | eqid 2736 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 33 | eqid 2736 | . . . 4 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
| 34 | 12, 2, 13, 18, 4 | rescbas 17847 | . . . 4 ⊢ (𝜑 → 𝑆 = (Base‘𝐸)) |
| 35 | 32, 33, 24, 34 | homfeq 17711 | . . 3 ⊢ (𝜑 → ((Homf ‘𝐷) = (Homf ‘𝐸) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐸)𝑦))) |
| 36 | 31, 35 | mpbird 257 | . 2 ⊢ (𝜑 → (Homf ‘𝐷) = (Homf ‘𝐸)) |
| 37 | eqid 2736 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 38 | 22, 37 | ressco 17438 | . . . . 5 ⊢ (𝑆 ∈ V → (comp‘𝐶) = (comp‘𝐷)) |
| 39 | 26, 38 | syl 17 | . . . 4 ⊢ (𝜑 → (comp‘𝐶) = (comp‘𝐷)) |
| 40 | 12, 2, 13, 18, 4, 37 | rescco 17850 | . . . 4 ⊢ (𝜑 → (comp‘𝐶) = (comp‘𝐸)) |
| 41 | 39, 40 | eqtr3d 2773 | . . 3 ⊢ (𝜑 → (comp‘𝐷) = (comp‘𝐸)) |
| 42 | 41, 36 | comfeqd 17724 | . 2 ⊢ (𝜑 → (compf‘𝐷) = (compf‘𝐸)) |
| 43 | 36, 42 | jca 511 | 1 ⊢ (𝜑 → ((Homf ‘𝐷) = (Homf ‘𝐸) ∧ (compf‘𝐷) = (compf‘𝐸))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 Vcvv 3464 ⊆ wss 3931 × cxp 5657 ↾ cres 5661 Fn wfn 6531 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 ↾s cress 17256 Hom chom 17287 compcco 17288 Catccat 17681 Homf chomf 17683 compfccomf 17684 ↾cat cresc 17826 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-hom 17300 df-cco 17301 df-homf 17687 df-comf 17688 df-resc 17829 |
| This theorem is referenced by: resscat 17870 funcres2c 17921 ressffth 17958 funcsetcres2 18111 |
| Copyright terms: Public domain | W3C validator |