MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullresc Structured version   Visualization version   GIF version

Theorem fullresc 17840
Description: The category formed by structure restriction is the same as the category restriction. (Contributed by Mario Carneiro, 5-Jan-2017.)
Hypotheses
Ref Expression
fullsubc.b 𝐵 = (Base‘𝐶)
fullsubc.h 𝐻 = (Homf𝐶)
fullsubc.c (𝜑𝐶 ∈ Cat)
fullsubc.s (𝜑𝑆𝐵)
fullsubc.d 𝐷 = (𝐶s 𝑆)
fullsubc.e 𝐸 = (𝐶cat (𝐻 ↾ (𝑆 × 𝑆)))
Assertion
Ref Expression
fullresc (𝜑 → ((Homf𝐷) = (Homf𝐸) ∧ (compf𝐷) = (compf𝐸)))

Proof of Theorem fullresc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fullsubc.h . . . . . 6 𝐻 = (Homf𝐶)
2 fullsubc.b . . . . . 6 𝐵 = (Base‘𝐶)
3 eqid 2725 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
4 fullsubc.s . . . . . . . 8 (𝜑𝑆𝐵)
54adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑆𝐵)
6 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑥𝑆)
75, 6sseldd 3977 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑥𝐵)
8 simprr 771 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑦𝑆)
95, 8sseldd 3977 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑦𝐵)
101, 2, 3, 7, 9homfval 17675 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐶)𝑦))
116, 8ovresd 7588 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥𝐻𝑦))
12 fullsubc.e . . . . . . . 8 𝐸 = (𝐶cat (𝐻 ↾ (𝑆 × 𝑆)))
13 fullsubc.c . . . . . . . 8 (𝜑𝐶 ∈ Cat)
141, 2homffn 17676 . . . . . . . . 9 𝐻 Fn (𝐵 × 𝐵)
15 xpss12 5693 . . . . . . . . . 10 ((𝑆𝐵𝑆𝐵) → (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵))
164, 4, 15syl2anc 582 . . . . . . . . 9 (𝜑 → (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵))
17 fnssres 6679 . . . . . . . . 9 ((𝐻 Fn (𝐵 × 𝐵) ∧ (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵)) → (𝐻 ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆))
1814, 16, 17sylancr 585 . . . . . . . 8 (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆))
1912, 2, 13, 18, 4reschom 17817 . . . . . . 7 (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) = (Hom ‘𝐸))
2019oveqdr 7447 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥(Hom ‘𝐸)𝑦))
2111, 20eqtr3d 2767 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐸)𝑦))
22 fullsubc.d . . . . . . . . . 10 𝐷 = (𝐶s 𝑆)
2322, 2ressbas2 17221 . . . . . . . . 9 (𝑆𝐵𝑆 = (Base‘𝐷))
244, 23syl 17 . . . . . . . 8 (𝜑𝑆 = (Base‘𝐷))
25 fvex 6909 . . . . . . . 8 (Base‘𝐷) ∈ V
2624, 25eqeltrdi 2833 . . . . . . 7 (𝜑𝑆 ∈ V)
2722, 3resshom 17403 . . . . . . 7 (𝑆 ∈ V → (Hom ‘𝐶) = (Hom ‘𝐷))
2826, 27syl 17 . . . . . 6 (𝜑 → (Hom ‘𝐶) = (Hom ‘𝐷))
2928oveqdr 7447 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦))
3010, 21, 293eqtr3rd 2774 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐸)𝑦))
3130ralrimivva 3190 . . 3 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐸)𝑦))
32 eqid 2725 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
33 eqid 2725 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
3412, 2, 13, 18, 4rescbas 17815 . . . 4 (𝜑𝑆 = (Base‘𝐸))
3532, 33, 24, 34homfeq 17677 . . 3 (𝜑 → ((Homf𝐷) = (Homf𝐸) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐸)𝑦)))
3631, 35mpbird 256 . 2 (𝜑 → (Homf𝐷) = (Homf𝐸))
37 eqid 2725 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
3822, 37ressco 17404 . . . . 5 (𝑆 ∈ V → (comp‘𝐶) = (comp‘𝐷))
3926, 38syl 17 . . . 4 (𝜑 → (comp‘𝐶) = (comp‘𝐷))
4012, 2, 13, 18, 4, 37rescco 17819 . . . 4 (𝜑 → (comp‘𝐶) = (comp‘𝐸))
4139, 40eqtr3d 2767 . . 3 (𝜑 → (comp‘𝐷) = (comp‘𝐸))
4241, 36comfeqd 17690 . 2 (𝜑 → (compf𝐷) = (compf𝐸))
4336, 42jca 510 1 (𝜑 → ((Homf𝐷) = (Homf𝐸) ∧ (compf𝐷) = (compf𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3050  Vcvv 3461  wss 3944   × cxp 5676  cres 5680   Fn wfn 6544  cfv 6549  (class class class)co 7419  Basecbs 17183  s cress 17212  Hom chom 17247  compcco 17248  Catccat 17647  Homf chomf 17649  compfccomf 17650  cat cresc 17794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-hom 17260  df-cco 17261  df-homf 17653  df-comf 17654  df-resc 17797
This theorem is referenced by:  resscat  17841  funcres2c  17893  ressffth  17930  funcsetcres2  18085
  Copyright terms: Public domain W3C validator