| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fullresc | Structured version Visualization version GIF version | ||
| Description: The category formed by structure restriction is the same as the category restriction. (Contributed by Mario Carneiro, 5-Jan-2017.) |
| Ref | Expression |
|---|---|
| fullsubc.b | ⊢ 𝐵 = (Base‘𝐶) |
| fullsubc.h | ⊢ 𝐻 = (Homf ‘𝐶) |
| fullsubc.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| fullsubc.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| fullsubc.d | ⊢ 𝐷 = (𝐶 ↾s 𝑆) |
| fullsubc.e | ⊢ 𝐸 = (𝐶 ↾cat (𝐻 ↾ (𝑆 × 𝑆))) |
| Ref | Expression |
|---|---|
| fullresc | ⊢ (𝜑 → ((Homf ‘𝐷) = (Homf ‘𝐸) ∧ (compf‘𝐷) = (compf‘𝐸))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fullsubc.h | . . . . . 6 ⊢ 𝐻 = (Homf ‘𝐶) | |
| 2 | fullsubc.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | eqid 2731 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 4 | fullsubc.s | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
| 5 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑆 ⊆ 𝐵) |
| 6 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ 𝑆) | |
| 7 | 5, 6 | sseldd 3935 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ 𝐵) |
| 8 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ 𝑆) | |
| 9 | 5, 8 | sseldd 3935 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ 𝐵) |
| 10 | 1, 2, 3, 7, 9 | homfval 17598 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐶)𝑦)) |
| 11 | 6, 8 | ovresd 7513 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥𝐻𝑦)) |
| 12 | fullsubc.e | . . . . . . . 8 ⊢ 𝐸 = (𝐶 ↾cat (𝐻 ↾ (𝑆 × 𝑆))) | |
| 13 | fullsubc.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 14 | 1, 2 | homffn 17599 | . . . . . . . . 9 ⊢ 𝐻 Fn (𝐵 × 𝐵) |
| 15 | xpss12 5631 | . . . . . . . . . 10 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝐵) → (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵)) | |
| 16 | 4, 4, 15 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵)) |
| 17 | fnssres 6604 | . . . . . . . . 9 ⊢ ((𝐻 Fn (𝐵 × 𝐵) ∧ (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵)) → (𝐻 ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆)) | |
| 18 | 14, 16, 17 | sylancr 587 | . . . . . . . 8 ⊢ (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆)) |
| 19 | 12, 2, 13, 18, 4 | reschom 17737 | . . . . . . 7 ⊢ (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) = (Hom ‘𝐸)) |
| 20 | 19 | oveqdr 7374 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥(Hom ‘𝐸)𝑦)) |
| 21 | 11, 20 | eqtr3d 2768 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐸)𝑦)) |
| 22 | fullsubc.d | . . . . . . . . . 10 ⊢ 𝐷 = (𝐶 ↾s 𝑆) | |
| 23 | 22, 2 | ressbas2 17149 | . . . . . . . . 9 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 = (Base‘𝐷)) |
| 24 | 4, 23 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 = (Base‘𝐷)) |
| 25 | fvex 6835 | . . . . . . . 8 ⊢ (Base‘𝐷) ∈ V | |
| 26 | 24, 25 | eqeltrdi 2839 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ V) |
| 27 | 22, 3 | resshom 17322 | . . . . . . 7 ⊢ (𝑆 ∈ V → (Hom ‘𝐶) = (Hom ‘𝐷)) |
| 28 | 26, 27 | syl 17 | . . . . . 6 ⊢ (𝜑 → (Hom ‘𝐶) = (Hom ‘𝐷)) |
| 29 | 28 | oveqdr 7374 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦)) |
| 30 | 10, 21, 29 | 3eqtr3rd 2775 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐸)𝑦)) |
| 31 | 30 | ralrimivva 3175 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐸)𝑦)) |
| 32 | eqid 2731 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 33 | eqid 2731 | . . . 4 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
| 34 | 12, 2, 13, 18, 4 | rescbas 17736 | . . . 4 ⊢ (𝜑 → 𝑆 = (Base‘𝐸)) |
| 35 | 32, 33, 24, 34 | homfeq 17600 | . . 3 ⊢ (𝜑 → ((Homf ‘𝐷) = (Homf ‘𝐸) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐸)𝑦))) |
| 36 | 31, 35 | mpbird 257 | . 2 ⊢ (𝜑 → (Homf ‘𝐷) = (Homf ‘𝐸)) |
| 37 | eqid 2731 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 38 | 22, 37 | ressco 17323 | . . . . 5 ⊢ (𝑆 ∈ V → (comp‘𝐶) = (comp‘𝐷)) |
| 39 | 26, 38 | syl 17 | . . . 4 ⊢ (𝜑 → (comp‘𝐶) = (comp‘𝐷)) |
| 40 | 12, 2, 13, 18, 4, 37 | rescco 17739 | . . . 4 ⊢ (𝜑 → (comp‘𝐶) = (comp‘𝐸)) |
| 41 | 39, 40 | eqtr3d 2768 | . . 3 ⊢ (𝜑 → (comp‘𝐷) = (comp‘𝐸)) |
| 42 | 41, 36 | comfeqd 17613 | . 2 ⊢ (𝜑 → (compf‘𝐷) = (compf‘𝐸)) |
| 43 | 36, 42 | jca 511 | 1 ⊢ (𝜑 → ((Homf ‘𝐷) = (Homf ‘𝐸) ∧ (compf‘𝐷) = (compf‘𝐸))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3902 × cxp 5614 ↾ cres 5618 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 ↾s cress 17141 Hom chom 17172 compcco 17173 Catccat 17570 Homf chomf 17572 compfccomf 17573 ↾cat cresc 17715 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-hom 17185 df-cco 17186 df-homf 17576 df-comf 17577 df-resc 17718 |
| This theorem is referenced by: resscat 17759 funcres2c 17810 ressffth 17847 funcsetcres2 18000 |
| Copyright terms: Public domain | W3C validator |