![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fullresc | Structured version Visualization version GIF version |
Description: The category formed by structure restriction is the same as the category restriction. (Contributed by Mario Carneiro, 5-Jan-2017.) |
Ref | Expression |
---|---|
fullsubc.b | ⊢ 𝐵 = (Base‘𝐶) |
fullsubc.h | ⊢ 𝐻 = (Homf ‘𝐶) |
fullsubc.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
fullsubc.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
fullsubc.d | ⊢ 𝐷 = (𝐶 ↾s 𝑆) |
fullsubc.e | ⊢ 𝐸 = (𝐶 ↾cat (𝐻 ↾ (𝑆 × 𝑆))) |
Ref | Expression |
---|---|
fullresc | ⊢ (𝜑 → ((Homf ‘𝐷) = (Homf ‘𝐸) ∧ (compf‘𝐷) = (compf‘𝐸))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fullsubc.h | . . . . . 6 ⊢ 𝐻 = (Homf ‘𝐶) | |
2 | fullsubc.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
3 | eqid 2740 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
4 | fullsubc.s | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
5 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑆 ⊆ 𝐵) |
6 | simprl 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ 𝑆) | |
7 | 5, 6 | sseldd 4009 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ 𝐵) |
8 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ 𝑆) | |
9 | 5, 8 | sseldd 4009 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ 𝐵) |
10 | 1, 2, 3, 7, 9 | homfval 17750 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐶)𝑦)) |
11 | 6, 8 | ovresd 7617 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥𝐻𝑦)) |
12 | fullsubc.e | . . . . . . . 8 ⊢ 𝐸 = (𝐶 ↾cat (𝐻 ↾ (𝑆 × 𝑆))) | |
13 | fullsubc.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
14 | 1, 2 | homffn 17751 | . . . . . . . . 9 ⊢ 𝐻 Fn (𝐵 × 𝐵) |
15 | xpss12 5715 | . . . . . . . . . 10 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝐵) → (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵)) | |
16 | 4, 4, 15 | syl2anc 583 | . . . . . . . . 9 ⊢ (𝜑 → (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵)) |
17 | fnssres 6703 | . . . . . . . . 9 ⊢ ((𝐻 Fn (𝐵 × 𝐵) ∧ (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵)) → (𝐻 ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆)) | |
18 | 14, 16, 17 | sylancr 586 | . . . . . . . 8 ⊢ (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆)) |
19 | 12, 2, 13, 18, 4 | reschom 17892 | . . . . . . 7 ⊢ (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) = (Hom ‘𝐸)) |
20 | 19 | oveqdr 7476 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥(Hom ‘𝐸)𝑦)) |
21 | 11, 20 | eqtr3d 2782 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐸)𝑦)) |
22 | fullsubc.d | . . . . . . . . . 10 ⊢ 𝐷 = (𝐶 ↾s 𝑆) | |
23 | 22, 2 | ressbas2 17296 | . . . . . . . . 9 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 = (Base‘𝐷)) |
24 | 4, 23 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 = (Base‘𝐷)) |
25 | fvex 6933 | . . . . . . . 8 ⊢ (Base‘𝐷) ∈ V | |
26 | 24, 25 | eqeltrdi 2852 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ V) |
27 | 22, 3 | resshom 17478 | . . . . . . 7 ⊢ (𝑆 ∈ V → (Hom ‘𝐶) = (Hom ‘𝐷)) |
28 | 26, 27 | syl 17 | . . . . . 6 ⊢ (𝜑 → (Hom ‘𝐶) = (Hom ‘𝐷)) |
29 | 28 | oveqdr 7476 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦)) |
30 | 10, 21, 29 | 3eqtr3rd 2789 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐸)𝑦)) |
31 | 30 | ralrimivva 3208 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐸)𝑦)) |
32 | eqid 2740 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
33 | eqid 2740 | . . . 4 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
34 | 12, 2, 13, 18, 4 | rescbas 17890 | . . . 4 ⊢ (𝜑 → 𝑆 = (Base‘𝐸)) |
35 | 32, 33, 24, 34 | homfeq 17752 | . . 3 ⊢ (𝜑 → ((Homf ‘𝐷) = (Homf ‘𝐸) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐸)𝑦))) |
36 | 31, 35 | mpbird 257 | . 2 ⊢ (𝜑 → (Homf ‘𝐷) = (Homf ‘𝐸)) |
37 | eqid 2740 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
38 | 22, 37 | ressco 17479 | . . . . 5 ⊢ (𝑆 ∈ V → (comp‘𝐶) = (comp‘𝐷)) |
39 | 26, 38 | syl 17 | . . . 4 ⊢ (𝜑 → (comp‘𝐶) = (comp‘𝐷)) |
40 | 12, 2, 13, 18, 4, 37 | rescco 17894 | . . . 4 ⊢ (𝜑 → (comp‘𝐶) = (comp‘𝐸)) |
41 | 39, 40 | eqtr3d 2782 | . . 3 ⊢ (𝜑 → (comp‘𝐷) = (comp‘𝐸)) |
42 | 41, 36 | comfeqd 17765 | . 2 ⊢ (𝜑 → (compf‘𝐷) = (compf‘𝐸)) |
43 | 36, 42 | jca 511 | 1 ⊢ (𝜑 → ((Homf ‘𝐷) = (Homf ‘𝐸) ∧ (compf‘𝐷) = (compf‘𝐸))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ⊆ wss 3976 × cxp 5698 ↾ cres 5702 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 ↾s cress 17287 Hom chom 17322 compcco 17323 Catccat 17722 Homf chomf 17724 compfccomf 17725 ↾cat cresc 17869 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-hom 17335 df-cco 17336 df-homf 17728 df-comf 17729 df-resc 17872 |
This theorem is referenced by: resscat 17916 funcres2c 17968 ressffth 18005 funcsetcres2 18160 |
Copyright terms: Public domain | W3C validator |