MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullresc Structured version   Visualization version   GIF version

Theorem fullresc 17869
Description: The category formed by structure restriction is the same as the category restriction. (Contributed by Mario Carneiro, 5-Jan-2017.)
Hypotheses
Ref Expression
fullsubc.b 𝐵 = (Base‘𝐶)
fullsubc.h 𝐻 = (Homf𝐶)
fullsubc.c (𝜑𝐶 ∈ Cat)
fullsubc.s (𝜑𝑆𝐵)
fullsubc.d 𝐷 = (𝐶s 𝑆)
fullsubc.e 𝐸 = (𝐶cat (𝐻 ↾ (𝑆 × 𝑆)))
Assertion
Ref Expression
fullresc (𝜑 → ((Homf𝐷) = (Homf𝐸) ∧ (compf𝐷) = (compf𝐸)))

Proof of Theorem fullresc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fullsubc.h . . . . . 6 𝐻 = (Homf𝐶)
2 fullsubc.b . . . . . 6 𝐵 = (Base‘𝐶)
3 eqid 2736 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
4 fullsubc.s . . . . . . . 8 (𝜑𝑆𝐵)
54adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑆𝐵)
6 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑥𝑆)
75, 6sseldd 3964 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑥𝐵)
8 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑦𝑆)
95, 8sseldd 3964 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑦𝐵)
101, 2, 3, 7, 9homfval 17709 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐶)𝑦))
116, 8ovresd 7579 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥𝐻𝑦))
12 fullsubc.e . . . . . . . 8 𝐸 = (𝐶cat (𝐻 ↾ (𝑆 × 𝑆)))
13 fullsubc.c . . . . . . . 8 (𝜑𝐶 ∈ Cat)
141, 2homffn 17710 . . . . . . . . 9 𝐻 Fn (𝐵 × 𝐵)
15 xpss12 5674 . . . . . . . . . 10 ((𝑆𝐵𝑆𝐵) → (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵))
164, 4, 15syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵))
17 fnssres 6666 . . . . . . . . 9 ((𝐻 Fn (𝐵 × 𝐵) ∧ (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵)) → (𝐻 ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆))
1814, 16, 17sylancr 587 . . . . . . . 8 (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆))
1912, 2, 13, 18, 4reschom 17848 . . . . . . 7 (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) = (Hom ‘𝐸))
2019oveqdr 7438 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥(Hom ‘𝐸)𝑦))
2111, 20eqtr3d 2773 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐸)𝑦))
22 fullsubc.d . . . . . . . . . 10 𝐷 = (𝐶s 𝑆)
2322, 2ressbas2 17264 . . . . . . . . 9 (𝑆𝐵𝑆 = (Base‘𝐷))
244, 23syl 17 . . . . . . . 8 (𝜑𝑆 = (Base‘𝐷))
25 fvex 6894 . . . . . . . 8 (Base‘𝐷) ∈ V
2624, 25eqeltrdi 2843 . . . . . . 7 (𝜑𝑆 ∈ V)
2722, 3resshom 17437 . . . . . . 7 (𝑆 ∈ V → (Hom ‘𝐶) = (Hom ‘𝐷))
2826, 27syl 17 . . . . . 6 (𝜑 → (Hom ‘𝐶) = (Hom ‘𝐷))
2928oveqdr 7438 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦))
3010, 21, 293eqtr3rd 2780 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐸)𝑦))
3130ralrimivva 3188 . . 3 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐸)𝑦))
32 eqid 2736 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
33 eqid 2736 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
3412, 2, 13, 18, 4rescbas 17847 . . . 4 (𝜑𝑆 = (Base‘𝐸))
3532, 33, 24, 34homfeq 17711 . . 3 (𝜑 → ((Homf𝐷) = (Homf𝐸) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐸)𝑦)))
3631, 35mpbird 257 . 2 (𝜑 → (Homf𝐷) = (Homf𝐸))
37 eqid 2736 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
3822, 37ressco 17438 . . . . 5 (𝑆 ∈ V → (comp‘𝐶) = (comp‘𝐷))
3926, 38syl 17 . . . 4 (𝜑 → (comp‘𝐶) = (comp‘𝐷))
4012, 2, 13, 18, 4, 37rescco 17850 . . . 4 (𝜑 → (comp‘𝐶) = (comp‘𝐸))
4139, 40eqtr3d 2773 . . 3 (𝜑 → (comp‘𝐷) = (comp‘𝐸))
4241, 36comfeqd 17724 . 2 (𝜑 → (compf𝐷) = (compf𝐸))
4336, 42jca 511 1 (𝜑 → ((Homf𝐷) = (Homf𝐸) ∧ (compf𝐷) = (compf𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  Vcvv 3464  wss 3931   × cxp 5657  cres 5661   Fn wfn 6531  cfv 6536  (class class class)co 7410  Basecbs 17233  s cress 17256  Hom chom 17287  compcco 17288  Catccat 17681  Homf chomf 17683  compfccomf 17684  cat cresc 17826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-hom 17300  df-cco 17301  df-homf 17687  df-comf 17688  df-resc 17829
This theorem is referenced by:  resscat  17870  funcres2c  17921  ressffth  17958  funcsetcres2  18111
  Copyright terms: Public domain W3C validator