Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fullresc | Structured version Visualization version GIF version |
Description: The category formed by structure restriction is the same as the category restriction. (Contributed by Mario Carneiro, 5-Jan-2017.) |
Ref | Expression |
---|---|
fullsubc.b | ⊢ 𝐵 = (Base‘𝐶) |
fullsubc.h | ⊢ 𝐻 = (Homf ‘𝐶) |
fullsubc.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
fullsubc.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
fullsubc.d | ⊢ 𝐷 = (𝐶 ↾s 𝑆) |
fullsubc.e | ⊢ 𝐸 = (𝐶 ↾cat (𝐻 ↾ (𝑆 × 𝑆))) |
Ref | Expression |
---|---|
fullresc | ⊢ (𝜑 → ((Homf ‘𝐷) = (Homf ‘𝐸) ∧ (compf‘𝐷) = (compf‘𝐸))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fullsubc.h | . . . . . 6 ⊢ 𝐻 = (Homf ‘𝐶) | |
2 | fullsubc.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
3 | eqid 2738 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
4 | fullsubc.s | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
5 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑆 ⊆ 𝐵) |
6 | simprl 767 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ 𝑆) | |
7 | 5, 6 | sseldd 3918 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ 𝐵) |
8 | simprr 769 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ 𝑆) | |
9 | 5, 8 | sseldd 3918 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ 𝐵) |
10 | 1, 2, 3, 7, 9 | homfval 17318 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐶)𝑦)) |
11 | 6, 8 | ovresd 7417 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥𝐻𝑦)) |
12 | fullsubc.e | . . . . . . . 8 ⊢ 𝐸 = (𝐶 ↾cat (𝐻 ↾ (𝑆 × 𝑆))) | |
13 | fullsubc.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
14 | 1, 2 | homffn 17319 | . . . . . . . . 9 ⊢ 𝐻 Fn (𝐵 × 𝐵) |
15 | xpss12 5595 | . . . . . . . . . 10 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝐵) → (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵)) | |
16 | 4, 4, 15 | syl2anc 583 | . . . . . . . . 9 ⊢ (𝜑 → (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵)) |
17 | fnssres 6539 | . . . . . . . . 9 ⊢ ((𝐻 Fn (𝐵 × 𝐵) ∧ (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵)) → (𝐻 ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆)) | |
18 | 14, 16, 17 | sylancr 586 | . . . . . . . 8 ⊢ (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆)) |
19 | 12, 2, 13, 18, 4 | reschom 17460 | . . . . . . 7 ⊢ (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) = (Hom ‘𝐸)) |
20 | 19 | oveqdr 7283 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥(Hom ‘𝐸)𝑦)) |
21 | 11, 20 | eqtr3d 2780 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐸)𝑦)) |
22 | fullsubc.d | . . . . . . . . . 10 ⊢ 𝐷 = (𝐶 ↾s 𝑆) | |
23 | 22, 2 | ressbas2 16875 | . . . . . . . . 9 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 = (Base‘𝐷)) |
24 | 4, 23 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 = (Base‘𝐷)) |
25 | fvex 6769 | . . . . . . . 8 ⊢ (Base‘𝐷) ∈ V | |
26 | 24, 25 | eqeltrdi 2847 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ V) |
27 | 22, 3 | resshom 17046 | . . . . . . 7 ⊢ (𝑆 ∈ V → (Hom ‘𝐶) = (Hom ‘𝐷)) |
28 | 26, 27 | syl 17 | . . . . . 6 ⊢ (𝜑 → (Hom ‘𝐶) = (Hom ‘𝐷)) |
29 | 28 | oveqdr 7283 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦)) |
30 | 10, 21, 29 | 3eqtr3rd 2787 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐸)𝑦)) |
31 | 30 | ralrimivva 3114 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐸)𝑦)) |
32 | eqid 2738 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
33 | eqid 2738 | . . . 4 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
34 | 12, 2, 13, 18, 4 | rescbas 17458 | . . . 4 ⊢ (𝜑 → 𝑆 = (Base‘𝐸)) |
35 | 32, 33, 24, 34 | homfeq 17320 | . . 3 ⊢ (𝜑 → ((Homf ‘𝐷) = (Homf ‘𝐸) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐸)𝑦))) |
36 | 31, 35 | mpbird 256 | . 2 ⊢ (𝜑 → (Homf ‘𝐷) = (Homf ‘𝐸)) |
37 | eqid 2738 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
38 | 22, 37 | ressco 17047 | . . . . 5 ⊢ (𝑆 ∈ V → (comp‘𝐶) = (comp‘𝐷)) |
39 | 26, 38 | syl 17 | . . . 4 ⊢ (𝜑 → (comp‘𝐶) = (comp‘𝐷)) |
40 | 12, 2, 13, 18, 4, 37 | rescco 17462 | . . . 4 ⊢ (𝜑 → (comp‘𝐶) = (comp‘𝐸)) |
41 | 39, 40 | eqtr3d 2780 | . . 3 ⊢ (𝜑 → (comp‘𝐷) = (comp‘𝐸)) |
42 | 41, 36 | comfeqd 17333 | . 2 ⊢ (𝜑 → (compf‘𝐷) = (compf‘𝐸)) |
43 | 36, 42 | jca 511 | 1 ⊢ (𝜑 → ((Homf ‘𝐷) = (Homf ‘𝐸) ∧ (compf‘𝐷) = (compf‘𝐸))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 × cxp 5578 ↾ cres 5582 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ↾s cress 16867 Hom chom 16899 compcco 16900 Catccat 17290 Homf chomf 17292 compfccomf 17293 ↾cat cresc 17437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-hom 16912 df-cco 16913 df-homf 17296 df-comf 17297 df-resc 17440 |
This theorem is referenced by: resscat 17483 funcres2c 17533 ressffth 17570 funcsetcres2 17724 |
Copyright terms: Public domain | W3C validator |