MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullresc Structured version   Visualization version   GIF version

Theorem fullresc 17121
Description: The category formed by structure restriction is the same as the category restriction. (Contributed by Mario Carneiro, 5-Jan-2017.)
Hypotheses
Ref Expression
fullsubc.b 𝐵 = (Base‘𝐶)
fullsubc.h 𝐻 = (Homf𝐶)
fullsubc.c (𝜑𝐶 ∈ Cat)
fullsubc.s (𝜑𝑆𝐵)
fullsubc.d 𝐷 = (𝐶s 𝑆)
fullsubc.e 𝐸 = (𝐶cat (𝐻 ↾ (𝑆 × 𝑆)))
Assertion
Ref Expression
fullresc (𝜑 → ((Homf𝐷) = (Homf𝐸) ∧ (compf𝐷) = (compf𝐸)))

Proof of Theorem fullresc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fullsubc.h . . . . . 6 𝐻 = (Homf𝐶)
2 fullsubc.b . . . . . 6 𝐵 = (Base‘𝐶)
3 eqid 2821 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
4 fullsubc.s . . . . . . . 8 (𝜑𝑆𝐵)
54adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑆𝐵)
6 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑥𝑆)
75, 6sseldd 3968 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑥𝐵)
8 simprr 771 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑦𝑆)
95, 8sseldd 3968 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑦𝐵)
101, 2, 3, 7, 9homfval 16962 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐶)𝑦))
116, 8ovresd 7315 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥𝐻𝑦))
12 fullsubc.e . . . . . . . 8 𝐸 = (𝐶cat (𝐻 ↾ (𝑆 × 𝑆)))
13 fullsubc.c . . . . . . . 8 (𝜑𝐶 ∈ Cat)
141, 2homffn 16963 . . . . . . . . 9 𝐻 Fn (𝐵 × 𝐵)
15 xpss12 5570 . . . . . . . . . 10 ((𝑆𝐵𝑆𝐵) → (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵))
164, 4, 15syl2anc 586 . . . . . . . . 9 (𝜑 → (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵))
17 fnssres 6470 . . . . . . . . 9 ((𝐻 Fn (𝐵 × 𝐵) ∧ (𝑆 × 𝑆) ⊆ (𝐵 × 𝐵)) → (𝐻 ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆))
1814, 16, 17sylancr 589 . . . . . . . 8 (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆))
1912, 2, 13, 18, 4reschom 17100 . . . . . . 7 (𝜑 → (𝐻 ↾ (𝑆 × 𝑆)) = (Hom ‘𝐸))
2019oveqdr 7184 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(𝐻 ↾ (𝑆 × 𝑆))𝑦) = (𝑥(Hom ‘𝐸)𝑦))
2111, 20eqtr3d 2858 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐻𝑦) = (𝑥(Hom ‘𝐸)𝑦))
22 fullsubc.d . . . . . . . . . 10 𝐷 = (𝐶s 𝑆)
2322, 2ressbas2 16555 . . . . . . . . 9 (𝑆𝐵𝑆 = (Base‘𝐷))
244, 23syl 17 . . . . . . . 8 (𝜑𝑆 = (Base‘𝐷))
25 fvex 6683 . . . . . . . 8 (Base‘𝐷) ∈ V
2624, 25eqeltrdi 2921 . . . . . . 7 (𝜑𝑆 ∈ V)
2722, 3resshom 16691 . . . . . . 7 (𝑆 ∈ V → (Hom ‘𝐶) = (Hom ‘𝐷))
2826, 27syl 17 . . . . . 6 (𝜑 → (Hom ‘𝐶) = (Hom ‘𝐷))
2928oveqdr 7184 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦))
3010, 21, 293eqtr3rd 2865 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐸)𝑦))
3130ralrimivva 3191 . . 3 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐸)𝑦))
32 eqid 2821 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
33 eqid 2821 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
3412, 2, 13, 18, 4rescbas 17099 . . . 4 (𝜑𝑆 = (Base‘𝐸))
3532, 33, 24, 34homfeq 16964 . . 3 (𝜑 → ((Homf𝐷) = (Homf𝐸) ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐸)𝑦)))
3631, 35mpbird 259 . 2 (𝜑 → (Homf𝐷) = (Homf𝐸))
37 eqid 2821 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
3822, 37ressco 16692 . . . . 5 (𝑆 ∈ V → (comp‘𝐶) = (comp‘𝐷))
3926, 38syl 17 . . . 4 (𝜑 → (comp‘𝐶) = (comp‘𝐷))
4012, 2, 13, 18, 4, 37rescco 17102 . . . 4 (𝜑 → (comp‘𝐶) = (comp‘𝐸))
4139, 40eqtr3d 2858 . . 3 (𝜑 → (comp‘𝐷) = (comp‘𝐸))
4241, 36comfeqd 16977 . 2 (𝜑 → (compf𝐷) = (compf𝐸))
4336, 42jca 514 1 (𝜑 → ((Homf𝐷) = (Homf𝐸) ∧ (compf𝐷) = (compf𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138  Vcvv 3494  wss 3936   × cxp 5553  cres 5557   Fn wfn 6350  cfv 6355  (class class class)co 7156  Basecbs 16483  s cress 16484  Hom chom 16576  compcco 16577  Catccat 16935  Homf chomf 16937  compfccomf 16938  cat cresc 17078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-hom 16589  df-cco 16590  df-homf 16941  df-comf 16942  df-resc 17081
This theorem is referenced by:  resscat  17122  funcres2c  17171  ressffth  17208  funcsetcres2  17353
  Copyright terms: Public domain W3C validator