| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > comffval2 | Structured version Visualization version GIF version | ||
| Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| comfffval2.o | ⊢ 𝑂 = (compf‘𝐶) |
| comfffval2.b | ⊢ 𝐵 = (Base‘𝐶) |
| comfffval2.h | ⊢ 𝐻 = (Homf ‘𝐶) |
| comfffval2.x | ⊢ · = (comp‘𝐶) |
| comffval2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| comffval2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| comffval2.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| comffval2 | ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comfffval2.o | . . 3 ⊢ 𝑂 = (compf‘𝐶) | |
| 2 | comfffval2.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | eqid 2729 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 4 | comfffval2.x | . . 3 ⊢ · = (comp‘𝐶) | |
| 5 | comffval2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | comffval2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | comffval2.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | comffval 17623 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) = (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑍), 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓))) |
| 9 | comfffval2.h | . . . 4 ⊢ 𝐻 = (Homf ‘𝐶) | |
| 10 | 9, 2, 3, 6, 7 | homfval 17616 | . . 3 ⊢ (𝜑 → (𝑌𝐻𝑍) = (𝑌(Hom ‘𝐶)𝑍)) |
| 11 | 9, 2, 3, 5, 6 | homfval 17616 | . . 3 ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐶)𝑌)) |
| 12 | eqidd 2730 | . . 3 ⊢ (𝜑 → (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓) = (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓)) | |
| 13 | 10, 11, 12 | mpoeq123dv 7428 | . 2 ⊢ (𝜑 → (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓)) = (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑍), 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓))) |
| 14 | 8, 13 | eqtr4d 2767 | 1 ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4585 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 Basecbs 17138 Hom chom 17190 compcco 17191 Homf chomf 17590 compfccomf 17591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-homf 17594 df-comf 17595 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |