![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > comffval2 | Structured version Visualization version GIF version |
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
comfffval2.o | โข ๐ = (compfโ๐ถ) |
comfffval2.b | โข ๐ต = (Baseโ๐ถ) |
comfffval2.h | โข ๐ป = (Homf โ๐ถ) |
comfffval2.x | โข ยท = (compโ๐ถ) |
comffval2.x | โข (๐ โ ๐ โ ๐ต) |
comffval2.y | โข (๐ โ ๐ โ ๐ต) |
comffval2.z | โข (๐ โ ๐ โ ๐ต) |
Ref | Expression |
---|---|
comffval2 | โข (๐ โ (โจ๐, ๐โฉ๐๐) = (๐ โ (๐๐ป๐), ๐ โ (๐๐ป๐) โฆ (๐(โจ๐, ๐โฉ ยท ๐)๐))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comfffval2.o | . . 3 โข ๐ = (compfโ๐ถ) | |
2 | comfffval2.b | . . 3 โข ๐ต = (Baseโ๐ถ) | |
3 | eqid 2733 | . . 3 โข (Hom โ๐ถ) = (Hom โ๐ถ) | |
4 | comfffval2.x | . . 3 โข ยท = (compโ๐ถ) | |
5 | comffval2.x | . . 3 โข (๐ โ ๐ โ ๐ต) | |
6 | comffval2.y | . . 3 โข (๐ โ ๐ โ ๐ต) | |
7 | comffval2.z | . . 3 โข (๐ โ ๐ โ ๐ต) | |
8 | 1, 2, 3, 4, 5, 6, 7 | comffval 17643 | . 2 โข (๐ โ (โจ๐, ๐โฉ๐๐) = (๐ โ (๐(Hom โ๐ถ)๐), ๐ โ (๐(Hom โ๐ถ)๐) โฆ (๐(โจ๐, ๐โฉ ยท ๐)๐))) |
9 | comfffval2.h | . . . 4 โข ๐ป = (Homf โ๐ถ) | |
10 | 9, 2, 3, 6, 7 | homfval 17636 | . . 3 โข (๐ โ (๐๐ป๐) = (๐(Hom โ๐ถ)๐)) |
11 | 9, 2, 3, 5, 6 | homfval 17636 | . . 3 โข (๐ โ (๐๐ป๐) = (๐(Hom โ๐ถ)๐)) |
12 | eqidd 2734 | . . 3 โข (๐ โ (๐(โจ๐, ๐โฉ ยท ๐)๐) = (๐(โจ๐, ๐โฉ ยท ๐)๐)) | |
13 | 10, 11, 12 | mpoeq123dv 7484 | . 2 โข (๐ โ (๐ โ (๐๐ป๐), ๐ โ (๐๐ป๐) โฆ (๐(โจ๐, ๐โฉ ยท ๐)๐)) = (๐ โ (๐(Hom โ๐ถ)๐), ๐ โ (๐(Hom โ๐ถ)๐) โฆ (๐(โจ๐, ๐โฉ ยท ๐)๐))) |
14 | 8, 13 | eqtr4d 2776 | 1 โข (๐ โ (โจ๐, ๐โฉ๐๐) = (๐ โ (๐๐ป๐), ๐ โ (๐๐ป๐) โฆ (๐(โจ๐, ๐โฉ ยท ๐)๐))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1542 โ wcel 2107 โจcop 4635 โcfv 6544 (class class class)co 7409 โ cmpo 7411 Basecbs 17144 Hom chom 17208 compcco 17209 Homf chomf 17610 compfccomf 17611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-homf 17614 df-comf 17615 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |