| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > comffval2 | Structured version Visualization version GIF version | ||
| Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| comfffval2.o | ⊢ 𝑂 = (compf‘𝐶) |
| comfffval2.b | ⊢ 𝐵 = (Base‘𝐶) |
| comfffval2.h | ⊢ 𝐻 = (Homf ‘𝐶) |
| comfffval2.x | ⊢ · = (comp‘𝐶) |
| comffval2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| comffval2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| comffval2.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| comffval2 | ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comfffval2.o | . . 3 ⊢ 𝑂 = (compf‘𝐶) | |
| 2 | comfffval2.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | eqid 2731 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 4 | comfffval2.x | . . 3 ⊢ · = (comp‘𝐶) | |
| 5 | comffval2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | comffval2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | comffval2.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | comffval 17602 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) = (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑍), 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓))) |
| 9 | comfffval2.h | . . . 4 ⊢ 𝐻 = (Homf ‘𝐶) | |
| 10 | 9, 2, 3, 6, 7 | homfval 17595 | . . 3 ⊢ (𝜑 → (𝑌𝐻𝑍) = (𝑌(Hom ‘𝐶)𝑍)) |
| 11 | 9, 2, 3, 5, 6 | homfval 17595 | . . 3 ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐶)𝑌)) |
| 12 | eqidd 2732 | . . 3 ⊢ (𝜑 → (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓) = (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓)) | |
| 13 | 10, 11, 12 | mpoeq123dv 7421 | . 2 ⊢ (𝜑 → (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓)) = (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑍), 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓))) |
| 14 | 8, 13 | eqtr4d 2769 | 1 ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 〈cop 4582 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 Basecbs 17117 Hom chom 17169 compcco 17170 Homf chomf 17569 compfccomf 17570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-homf 17573 df-comf 17574 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |