Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > comffval2 | Structured version Visualization version GIF version |
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
comfffval2.o | ⊢ 𝑂 = (compf‘𝐶) |
comfffval2.b | ⊢ 𝐵 = (Base‘𝐶) |
comfffval2.h | ⊢ 𝐻 = (Homf ‘𝐶) |
comfffval2.x | ⊢ · = (comp‘𝐶) |
comffval2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
comffval2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
comffval2.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
comffval2 | ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comfffval2.o | . . 3 ⊢ 𝑂 = (compf‘𝐶) | |
2 | comfffval2.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
3 | eqid 2758 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
4 | comfffval2.x | . . 3 ⊢ · = (comp‘𝐶) | |
5 | comffval2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | comffval2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | comffval2.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
8 | 1, 2, 3, 4, 5, 6, 7 | comffval 17041 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) = (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑍), 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓))) |
9 | comfffval2.h | . . . 4 ⊢ 𝐻 = (Homf ‘𝐶) | |
10 | 9, 2, 3, 6, 7 | homfval 17034 | . . 3 ⊢ (𝜑 → (𝑌𝐻𝑍) = (𝑌(Hom ‘𝐶)𝑍)) |
11 | 9, 2, 3, 5, 6 | homfval 17034 | . . 3 ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐶)𝑌)) |
12 | eqidd 2759 | . . 3 ⊢ (𝜑 → (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓) = (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓)) | |
13 | 10, 11, 12 | mpoeq123dv 7229 | . 2 ⊢ (𝜑 → (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓)) = (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑍), 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓))) |
14 | 8, 13 | eqtr4d 2796 | 1 ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 〈cop 4531 ‘cfv 6340 (class class class)co 7156 ∈ cmpo 7158 Basecbs 16555 Hom chom 16648 compcco 16649 Homf chomf 17009 compfccomf 17010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7159 df-oprab 7160 df-mpo 7161 df-1st 7699 df-2nd 7700 df-homf 17013 df-comf 17014 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |