MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comffval2 Structured version   Visualization version   GIF version

Theorem comffval2 17655
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
comfffval2.o ๐‘‚ = (compfโ€˜๐ถ)
comfffval2.b ๐ต = (Baseโ€˜๐ถ)
comfffval2.h ๐ป = (Homf โ€˜๐ถ)
comfffval2.x ยท = (compโ€˜๐ถ)
comffval2.x (๐œ‘ โ†’ ๐‘‹ โˆˆ ๐ต)
comffval2.y (๐œ‘ โ†’ ๐‘Œ โˆˆ ๐ต)
comffval2.z (๐œ‘ โ†’ ๐‘ โˆˆ ๐ต)
Assertion
Ref Expression
comffval2 (๐œ‘ โ†’ (โŸจ๐‘‹, ๐‘ŒโŸฉ๐‘‚๐‘) = (๐‘” โˆˆ (๐‘Œ๐ป๐‘), ๐‘“ โˆˆ (๐‘‹๐ป๐‘Œ) โ†ฆ (๐‘”(โŸจ๐‘‹, ๐‘ŒโŸฉ ยท ๐‘)๐‘“)))
Distinct variable groups:   ๐‘“,๐‘”,๐ต   ๐ถ,๐‘“,๐‘”   ยท ,๐‘“,๐‘”   ๐‘“,๐‘‹,๐‘”   ๐‘“,๐‘Œ,๐‘”   ๐œ‘,๐‘“,๐‘”   ๐‘“,๐‘,๐‘”
Allowed substitution hints:   ๐ป(๐‘“,๐‘”)   ๐‘‚(๐‘“,๐‘”)

Proof of Theorem comffval2
StepHypRef Expression
1 comfffval2.o . . 3 ๐‘‚ = (compfโ€˜๐ถ)
2 comfffval2.b . . 3 ๐ต = (Baseโ€˜๐ถ)
3 eqid 2726 . . 3 (Hom โ€˜๐ถ) = (Hom โ€˜๐ถ)
4 comfffval2.x . . 3 ยท = (compโ€˜๐ถ)
5 comffval2.x . . 3 (๐œ‘ โ†’ ๐‘‹ โˆˆ ๐ต)
6 comffval2.y . . 3 (๐œ‘ โ†’ ๐‘Œ โˆˆ ๐ต)
7 comffval2.z . . 3 (๐œ‘ โ†’ ๐‘ โˆˆ ๐ต)
81, 2, 3, 4, 5, 6, 7comffval 17652 . 2 (๐œ‘ โ†’ (โŸจ๐‘‹, ๐‘ŒโŸฉ๐‘‚๐‘) = (๐‘” โˆˆ (๐‘Œ(Hom โ€˜๐ถ)๐‘), ๐‘“ โˆˆ (๐‘‹(Hom โ€˜๐ถ)๐‘Œ) โ†ฆ (๐‘”(โŸจ๐‘‹, ๐‘ŒโŸฉ ยท ๐‘)๐‘“)))
9 comfffval2.h . . . 4 ๐ป = (Homf โ€˜๐ถ)
109, 2, 3, 6, 7homfval 17645 . . 3 (๐œ‘ โ†’ (๐‘Œ๐ป๐‘) = (๐‘Œ(Hom โ€˜๐ถ)๐‘))
119, 2, 3, 5, 6homfval 17645 . . 3 (๐œ‘ โ†’ (๐‘‹๐ป๐‘Œ) = (๐‘‹(Hom โ€˜๐ถ)๐‘Œ))
12 eqidd 2727 . . 3 (๐œ‘ โ†’ (๐‘”(โŸจ๐‘‹, ๐‘ŒโŸฉ ยท ๐‘)๐‘“) = (๐‘”(โŸจ๐‘‹, ๐‘ŒโŸฉ ยท ๐‘)๐‘“))
1310, 11, 12mpoeq123dv 7480 . 2 (๐œ‘ โ†’ (๐‘” โˆˆ (๐‘Œ๐ป๐‘), ๐‘“ โˆˆ (๐‘‹๐ป๐‘Œ) โ†ฆ (๐‘”(โŸจ๐‘‹, ๐‘ŒโŸฉ ยท ๐‘)๐‘“)) = (๐‘” โˆˆ (๐‘Œ(Hom โ€˜๐ถ)๐‘), ๐‘“ โˆˆ (๐‘‹(Hom โ€˜๐ถ)๐‘Œ) โ†ฆ (๐‘”(โŸจ๐‘‹, ๐‘ŒโŸฉ ยท ๐‘)๐‘“)))
148, 13eqtr4d 2769 1 (๐œ‘ โ†’ (โŸจ๐‘‹, ๐‘ŒโŸฉ๐‘‚๐‘) = (๐‘” โˆˆ (๐‘Œ๐ป๐‘), ๐‘“ โˆˆ (๐‘‹๐ป๐‘Œ) โ†ฆ (๐‘”(โŸจ๐‘‹, ๐‘ŒโŸฉ ยท ๐‘)๐‘“)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   = wceq 1533   โˆˆ wcel 2098  โŸจcop 4629  โ€˜cfv 6537  (class class class)co 7405   โˆˆ cmpo 7407  Basecbs 17153  Hom chom 17217  compcco 17218  Homf chomf 17619  compfccomf 17620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7974  df-2nd 7975  df-homf 17623  df-comf 17624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator