![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > comffval2 | Structured version Visualization version GIF version |
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
comfffval2.o | ⊢ 𝑂 = (compf‘𝐶) |
comfffval2.b | ⊢ 𝐵 = (Base‘𝐶) |
comfffval2.h | ⊢ 𝐻 = (Homf ‘𝐶) |
comfffval2.x | ⊢ · = (comp‘𝐶) |
comffval2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
comffval2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
comffval2.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
comffval2 | ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comfffval2.o | . . 3 ⊢ 𝑂 = (compf‘𝐶) | |
2 | comfffval2.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
3 | eqid 2737 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
4 | comfffval2.x | . . 3 ⊢ · = (comp‘𝐶) | |
5 | comffval2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | comffval2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | comffval2.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
8 | 1, 2, 3, 4, 5, 6, 7 | comffval 17753 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) = (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑍), 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓))) |
9 | comfffval2.h | . . . 4 ⊢ 𝐻 = (Homf ‘𝐶) | |
10 | 9, 2, 3, 6, 7 | homfval 17746 | . . 3 ⊢ (𝜑 → (𝑌𝐻𝑍) = (𝑌(Hom ‘𝐶)𝑍)) |
11 | 9, 2, 3, 5, 6 | homfval 17746 | . . 3 ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐶)𝑌)) |
12 | eqidd 2738 | . . 3 ⊢ (𝜑 → (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓) = (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓)) | |
13 | 10, 11, 12 | mpoeq123dv 7515 | . 2 ⊢ (𝜑 → (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓)) = (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑍), 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓))) |
14 | 8, 13 | eqtr4d 2780 | 1 ⊢ (𝜑 → (〈𝑋, 𝑌〉𝑂𝑍) = (𝑔 ∈ (𝑌𝐻𝑍), 𝑓 ∈ (𝑋𝐻𝑌) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑍)𝑓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 〈cop 4640 ‘cfv 6569 (class class class)co 7438 ∈ cmpo 7440 Basecbs 17254 Hom chom 17318 compcco 17319 Homf chomf 17720 compfccomf 17721 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-homf 17724 df-comf 17725 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |