Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cxpmul | Structured version Visualization version GIF version |
Description: Product of exponents law for complex exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135. (Contributed by Mario Carneiro, 2-Aug-2014.) |
Ref | Expression |
---|---|
cxpmul | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐(𝐵 · 𝐶)) = ((𝐴↑𝑐𝐵)↑𝑐𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1139 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ) | |
2 | simp2 1138 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℝ) | |
3 | 2 | recnd 10740 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℂ) |
4 | relogcl 25311 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ) | |
5 | 4 | 3ad2ant1 1134 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (log‘𝐴) ∈ ℝ) |
6 | 5 | recnd 10740 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (log‘𝐴) ∈ ℂ) |
7 | 1, 3, 6 | mulassd 10735 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → ((𝐶 · 𝐵) · (log‘𝐴)) = (𝐶 · (𝐵 · (log‘𝐴)))) |
8 | 3, 1 | mulcomd 10733 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) = (𝐶 · 𝐵)) |
9 | 8 | oveq1d 7179 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → ((𝐵 · 𝐶) · (log‘𝐴)) = ((𝐶 · 𝐵) · (log‘𝐴))) |
10 | rpcn 12475 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) | |
11 | 10 | 3ad2ant1 1134 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ) |
12 | rpne0 12481 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ≠ 0) | |
13 | 12 | 3ad2ant1 1134 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → 𝐴 ≠ 0) |
14 | cxpef 25400 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) | |
15 | 11, 13, 3, 14 | syl3anc 1372 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) |
16 | 15 | fveq2d 6672 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (log‘(𝐴↑𝑐𝐵)) = (log‘(exp‘(𝐵 · (log‘𝐴))))) |
17 | 2, 5 | remulcld 10742 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐵 · (log‘𝐴)) ∈ ℝ) |
18 | 17 | relogefd 25363 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (log‘(exp‘(𝐵 · (log‘𝐴)))) = (𝐵 · (log‘𝐴))) |
19 | 16, 18 | eqtrd 2773 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (log‘(𝐴↑𝑐𝐵)) = (𝐵 · (log‘𝐴))) |
20 | 19 | oveq2d 7180 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐶 · (log‘(𝐴↑𝑐𝐵))) = (𝐶 · (𝐵 · (log‘𝐴)))) |
21 | 7, 9, 20 | 3eqtr4d 2783 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → ((𝐵 · 𝐶) · (log‘𝐴)) = (𝐶 · (log‘(𝐴↑𝑐𝐵)))) |
22 | 21 | fveq2d 6672 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (exp‘((𝐵 · 𝐶) · (log‘𝐴))) = (exp‘(𝐶 · (log‘(𝐴↑𝑐𝐵))))) |
23 | 3, 1 | mulcld 10732 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) ∈ ℂ) |
24 | cxpef 25400 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (𝐵 · 𝐶) ∈ ℂ) → (𝐴↑𝑐(𝐵 · 𝐶)) = (exp‘((𝐵 · 𝐶) · (log‘𝐴)))) | |
25 | 11, 13, 23, 24 | syl3anc 1372 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐(𝐵 · 𝐶)) = (exp‘((𝐵 · 𝐶) · (log‘𝐴)))) |
26 | cxpcl 25409 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) ∈ ℂ) | |
27 | 11, 3, 26 | syl2anc 587 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐𝐵) ∈ ℂ) |
28 | cxpne0 25412 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) ≠ 0) | |
29 | 11, 13, 3, 28 | syl3anc 1372 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐𝐵) ≠ 0) |
30 | cxpef 25400 | . . 3 ⊢ (((𝐴↑𝑐𝐵) ∈ ℂ ∧ (𝐴↑𝑐𝐵) ≠ 0 ∧ 𝐶 ∈ ℂ) → ((𝐴↑𝑐𝐵)↑𝑐𝐶) = (exp‘(𝐶 · (log‘(𝐴↑𝑐𝐵))))) | |
31 | 27, 29, 1, 30 | syl3anc 1372 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → ((𝐴↑𝑐𝐵)↑𝑐𝐶) = (exp‘(𝐶 · (log‘(𝐴↑𝑐𝐵))))) |
32 | 22, 25, 31 | 3eqtr4d 2783 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐(𝐵 · 𝐶)) = ((𝐴↑𝑐𝐵)↑𝑐𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2113 ≠ wne 2934 ‘cfv 6333 (class class class)co 7164 ℂcc 10606 ℝcr 10607 0cc0 10608 · cmul 10613 ℝ+crp 12465 expce 15500 logclog 25290 ↑𝑐ccxp 25291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-inf2 9170 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 ax-pre-sup 10686 ax-addf 10687 ax-mulf 10688 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-int 4834 df-iun 4880 df-iin 4881 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-se 5479 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-isom 6342 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-of 7419 df-om 7594 df-1st 7707 df-2nd 7708 df-supp 7850 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-1o 8124 df-2o 8125 df-er 8313 df-map 8432 df-pm 8433 df-ixp 8501 df-en 8549 df-dom 8550 df-sdom 8551 df-fin 8552 df-fsupp 8900 df-fi 8941 df-sup 8972 df-inf 8973 df-oi 9040 df-card 9434 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-div 11369 df-nn 11710 df-2 11772 df-3 11773 df-4 11774 df-5 11775 df-6 11776 df-7 11777 df-8 11778 df-9 11779 df-n0 11970 df-z 12056 df-dec 12173 df-uz 12318 df-q 12424 df-rp 12466 df-xneg 12583 df-xadd 12584 df-xmul 12585 df-ioo 12818 df-ioc 12819 df-ico 12820 df-icc 12821 df-fz 12975 df-fzo 13118 df-fl 13246 df-mod 13322 df-seq 13454 df-exp 13515 df-fac 13719 df-bc 13748 df-hash 13776 df-shft 14509 df-cj 14541 df-re 14542 df-im 14543 df-sqrt 14677 df-abs 14678 df-limsup 14911 df-clim 14928 df-rlim 14929 df-sum 15129 df-ef 15506 df-sin 15508 df-cos 15509 df-pi 15511 df-struct 16581 df-ndx 16582 df-slot 16583 df-base 16585 df-sets 16586 df-ress 16587 df-plusg 16674 df-mulr 16675 df-starv 16676 df-sca 16677 df-vsca 16678 df-ip 16679 df-tset 16680 df-ple 16681 df-ds 16683 df-unif 16684 df-hom 16685 df-cco 16686 df-rest 16792 df-topn 16793 df-0g 16811 df-gsum 16812 df-topgen 16813 df-pt 16814 df-prds 16817 df-xrs 16871 df-qtop 16876 df-imas 16877 df-xps 16879 df-mre 16953 df-mrc 16954 df-acs 16956 df-mgm 17961 df-sgrp 18010 df-mnd 18021 df-submnd 18066 df-mulg 18336 df-cntz 18558 df-cmn 19019 df-psmet 20202 df-xmet 20203 df-met 20204 df-bl 20205 df-mopn 20206 df-fbas 20207 df-fg 20208 df-cnfld 20211 df-top 21638 df-topon 21655 df-topsp 21677 df-bases 21690 df-cld 21763 df-ntr 21764 df-cls 21765 df-nei 21842 df-lp 21880 df-perf 21881 df-cn 21971 df-cnp 21972 df-haus 22059 df-tx 22306 df-hmeo 22499 df-fil 22590 df-fm 22682 df-flim 22683 df-flf 22684 df-xms 23066 df-ms 23067 df-tms 23068 df-cncf 23623 df-limc 24610 df-dv 24611 df-log 25292 df-cxp 25293 |
This theorem is referenced by: 2irrexpq 25465 cxpmuld 25471 cxpcom 25472 |
Copyright terms: Public domain | W3C validator |