MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpmul Structured version   Visualization version   GIF version

Theorem cxpmul 26187
Description: Product of exponents law for complex exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
cxpmul ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝑐𝐶))

Proof of Theorem cxpmul
StepHypRef Expression
1 simp3 1138 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
2 simp2 1137 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℝ)
32recnd 11238 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℂ)
4 relogcl 26075 . . . . . . 7 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
543ad2ant1 1133 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (log‘𝐴) ∈ ℝ)
65recnd 11238 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (log‘𝐴) ∈ ℂ)
71, 3, 6mulassd 11233 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → ((𝐶 · 𝐵) · (log‘𝐴)) = (𝐶 · (𝐵 · (log‘𝐴))))
83, 1mulcomd 11231 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) = (𝐶 · 𝐵))
98oveq1d 7420 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → ((𝐵 · 𝐶) · (log‘𝐴)) = ((𝐶 · 𝐵) · (log‘𝐴)))
10 rpcn 12980 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
11103ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ)
12 rpne0 12986 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ≠ 0)
13123ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → 𝐴 ≠ 0)
14 cxpef 26164 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))
1511, 13, 3, 14syl3anc 1371 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐴𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴))))
1615fveq2d 6892 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (log‘(𝐴𝑐𝐵)) = (log‘(exp‘(𝐵 · (log‘𝐴)))))
172, 5remulcld 11240 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐵 · (log‘𝐴)) ∈ ℝ)
1817relogefd 26127 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (log‘(exp‘(𝐵 · (log‘𝐴)))) = (𝐵 · (log‘𝐴)))
1916, 18eqtrd 2772 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (log‘(𝐴𝑐𝐵)) = (𝐵 · (log‘𝐴)))
2019oveq2d 7421 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐶 · (log‘(𝐴𝑐𝐵))) = (𝐶 · (𝐵 · (log‘𝐴))))
217, 9, 203eqtr4d 2782 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → ((𝐵 · 𝐶) · (log‘𝐴)) = (𝐶 · (log‘(𝐴𝑐𝐵))))
2221fveq2d 6892 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (exp‘((𝐵 · 𝐶) · (log‘𝐴))) = (exp‘(𝐶 · (log‘(𝐴𝑐𝐵)))))
233, 1mulcld 11230 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐵 · 𝐶) ∈ ℂ)
24 cxpef 26164 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (𝐵 · 𝐶) ∈ ℂ) → (𝐴𝑐(𝐵 · 𝐶)) = (exp‘((𝐵 · 𝐶) · (log‘𝐴))))
2511, 13, 23, 24syl3anc 1371 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝐶)) = (exp‘((𝐵 · 𝐶) · (log‘𝐴))))
26 cxpcl 26173 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝑐𝐵) ∈ ℂ)
2711, 3, 26syl2anc 584 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐴𝑐𝐵) ∈ ℂ)
28 cxpne0 26176 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴𝑐𝐵) ≠ 0)
2911, 13, 3, 28syl3anc 1371 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐴𝑐𝐵) ≠ 0)
30 cxpef 26164 . . 3 (((𝐴𝑐𝐵) ∈ ℂ ∧ (𝐴𝑐𝐵) ≠ 0 ∧ 𝐶 ∈ ℂ) → ((𝐴𝑐𝐵)↑𝑐𝐶) = (exp‘(𝐶 · (log‘(𝐴𝑐𝐵)))))
3127, 29, 1, 30syl3anc 1371 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → ((𝐴𝑐𝐵)↑𝑐𝐶) = (exp‘(𝐶 · (log‘(𝐴𝑐𝐵)))))
3222, 25, 313eqtr4d 2782 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ) → (𝐴𝑐(𝐵 · 𝐶)) = ((𝐴𝑐𝐵)↑𝑐𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  wne 2940  cfv 6540  (class class class)co 7405  cc 11104  cr 11105  0cc0 11106   · cmul 11111  +crp 12970  expce 16001  logclog 26054  𝑐ccxp 26055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ioc 13325  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-fac 14230  df-bc 14259  df-hash 14287  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15411  df-clim 15428  df-rlim 15429  df-sum 15629  df-ef 16007  df-sin 16009  df-cos 16010  df-pi 16012  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-rest 17364  df-topn 17365  df-0g 17383  df-gsum 17384  df-topgen 17385  df-pt 17386  df-prds 17389  df-xrs 17444  df-qtop 17449  df-imas 17450  df-xps 17452  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-mulg 18945  df-cntz 19175  df-cmn 19644  df-psmet 20928  df-xmet 20929  df-met 20930  df-bl 20931  df-mopn 20932  df-fbas 20933  df-fg 20934  df-cnfld 20937  df-top 22387  df-topon 22404  df-topsp 22426  df-bases 22440  df-cld 22514  df-ntr 22515  df-cls 22516  df-nei 22593  df-lp 22631  df-perf 22632  df-cn 22722  df-cnp 22723  df-haus 22810  df-tx 23057  df-hmeo 23250  df-fil 23341  df-fm 23433  df-flim 23434  df-flf 23435  df-xms 23817  df-ms 23818  df-tms 23819  df-cncf 24385  df-limc 25374  df-dv 25375  df-log 26056  df-cxp 26057
This theorem is referenced by:  2irrexpq  26229  cxpmuld  26235  cxpcom  26236
  Copyright terms: Public domain W3C validator