![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abscxp2 | Structured version Visualization version GIF version |
Description: Absolute value of a power, when the exponent is real. (Contributed by Mario Carneiro, 15-Sep-2014.) |
Ref | Expression |
---|---|
abscxp2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) → (abs‘(𝐴↑𝑐𝐵)) = ((abs‘𝐴)↑𝑐𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 11241 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 0) → 0 ∈ ℝ) | |
2 | 0le0 12337 | . . . . . 6 ⊢ 0 ≤ 0 | |
3 | 2 | a1i 11 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 0) → 0 ≤ 0) |
4 | simplr 768 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 0) → 𝐵 ∈ ℝ) | |
5 | recxpcl 26602 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 0 ≤ 0 ∧ 𝐵 ∈ ℝ) → (0↑𝑐𝐵) ∈ ℝ) | |
6 | 1, 3, 4, 5 | syl3anc 1369 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 0) → (0↑𝑐𝐵) ∈ ℝ) |
7 | cxpge0 26610 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 0 ≤ 0 ∧ 𝐵 ∈ ℝ) → 0 ≤ (0↑𝑐𝐵)) | |
8 | 1, 3, 4, 7 | syl3anc 1369 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 0) → 0 ≤ (0↑𝑐𝐵)) |
9 | 6, 8 | absidd 15395 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 0) → (abs‘(0↑𝑐𝐵)) = (0↑𝑐𝐵)) |
10 | simpr 484 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 0) → 𝐴 = 0) | |
11 | 10 | oveq1d 7429 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 0) → (𝐴↑𝑐𝐵) = (0↑𝑐𝐵)) |
12 | 11 | fveq2d 6895 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 0) → (abs‘(𝐴↑𝑐𝐵)) = (abs‘(0↑𝑐𝐵))) |
13 | 10 | abs00bd 15264 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 0) → (abs‘𝐴) = 0) |
14 | 13 | oveq1d 7429 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 0) → ((abs‘𝐴)↑𝑐𝐵) = (0↑𝑐𝐵)) |
15 | 9, 12, 14 | 3eqtr4d 2777 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 0) → (abs‘(𝐴↑𝑐𝐵)) = ((abs‘𝐴)↑𝑐𝐵)) |
16 | simplr 768 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → 𝐵 ∈ ℝ) | |
17 | 16 | recnd 11266 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → 𝐵 ∈ ℂ) |
18 | logcl 26495 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ) | |
19 | 18 | adantlr 714 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ) |
20 | 17, 19 | mulcld 11258 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (𝐵 · (log‘𝐴)) ∈ ℂ) |
21 | absef 16167 | . . . . 5 ⊢ ((𝐵 · (log‘𝐴)) ∈ ℂ → (abs‘(exp‘(𝐵 · (log‘𝐴)))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴))))) | |
22 | 20, 21 | syl 17 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (abs‘(exp‘(𝐵 · (log‘𝐴)))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴))))) |
23 | 16, 19 | remul2d 15200 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (ℜ‘(𝐵 · (log‘𝐴))) = (𝐵 · (ℜ‘(log‘𝐴)))) |
24 | relog 26524 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) = (log‘(abs‘𝐴))) | |
25 | 24 | adantlr 714 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) = (log‘(abs‘𝐴))) |
26 | 25 | oveq2d 7430 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (𝐵 · (ℜ‘(log‘𝐴))) = (𝐵 · (log‘(abs‘𝐴)))) |
27 | 23, 26 | eqtrd 2767 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (ℜ‘(𝐵 · (log‘𝐴))) = (𝐵 · (log‘(abs‘𝐴)))) |
28 | 27 | fveq2d 6895 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (exp‘(ℜ‘(𝐵 · (log‘𝐴)))) = (exp‘(𝐵 · (log‘(abs‘𝐴))))) |
29 | 22, 28 | eqtrd 2767 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (abs‘(exp‘(𝐵 · (log‘𝐴)))) = (exp‘(𝐵 · (log‘(abs‘𝐴))))) |
30 | simpll 766 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ) | |
31 | simpr 484 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → 𝐴 ≠ 0) | |
32 | cxpef 26592 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) | |
33 | 30, 31, 17, 32 | syl3anc 1369 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) |
34 | 33 | fveq2d 6895 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (abs‘(𝐴↑𝑐𝐵)) = (abs‘(exp‘(𝐵 · (log‘𝐴))))) |
35 | 30 | abscld 15409 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ) |
36 | 35 | recnd 11266 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℂ) |
37 | abs00 15262 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴) = 0 ↔ 𝐴 = 0)) | |
38 | 37 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) = 0 ↔ 𝐴 = 0)) |
39 | 38 | necon3bid 2980 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0)) |
40 | 39 | biimpar 477 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ≠ 0) |
41 | cxpef 26592 | . . . 4 ⊢ (((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ≠ 0 ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴)↑𝑐𝐵) = (exp‘(𝐵 · (log‘(abs‘𝐴))))) | |
42 | 36, 40, 17, 41 | syl3anc 1369 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → ((abs‘𝐴)↑𝑐𝐵) = (exp‘(𝐵 · (log‘(abs‘𝐴))))) |
43 | 29, 34, 42 | 3eqtr4d 2777 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (abs‘(𝐴↑𝑐𝐵)) = ((abs‘𝐴)↑𝑐𝐵)) |
44 | 15, 43 | pm2.61dane 3024 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) → (abs‘(𝐴↑𝑐𝐵)) = ((abs‘𝐴)↑𝑐𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 ℂcc 11130 ℝcr 11131 0cc0 11132 · cmul 11137 ≤ cle 11273 ℜcre 15070 abscabs 15207 expce 16031 logclog 26481 ↑𝑐ccxp 26482 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9658 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 ax-addf 11211 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9380 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-q 12957 df-rp 13001 df-xneg 13118 df-xadd 13119 df-xmul 13120 df-ioo 13354 df-ioc 13355 df-ico 13356 df-icc 13357 df-fz 13511 df-fzo 13654 df-fl 13783 df-mod 13861 df-seq 13993 df-exp 14053 df-fac 14259 df-bc 14288 df-hash 14316 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15441 df-clim 15458 df-rlim 15459 df-sum 15659 df-ef 16037 df-sin 16039 df-cos 16040 df-pi 16042 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-rest 17397 df-topn 17398 df-0g 17416 df-gsum 17417 df-topgen 17418 df-pt 17419 df-prds 17422 df-xrs 17477 df-qtop 17482 df-imas 17483 df-xps 17485 df-mre 17559 df-mrc 17560 df-acs 17562 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-submnd 18734 df-mulg 19017 df-cntz 19261 df-cmn 19730 df-psmet 21264 df-xmet 21265 df-met 21266 df-bl 21267 df-mopn 21268 df-fbas 21269 df-fg 21270 df-cnfld 21273 df-top 22789 df-topon 22806 df-topsp 22828 df-bases 22842 df-cld 22916 df-ntr 22917 df-cls 22918 df-nei 22995 df-lp 23033 df-perf 23034 df-cn 23124 df-cnp 23125 df-haus 23212 df-tx 23459 df-hmeo 23652 df-fil 23743 df-fm 23835 df-flim 23836 df-flf 23837 df-xms 24219 df-ms 24220 df-tms 24221 df-cncf 24791 df-limc 25788 df-dv 25789 df-log 26483 df-cxp 26484 |
This theorem is referenced by: root1cj 26684 rlimcxp 26899 |
Copyright terms: Public domain | W3C validator |