![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abscxp2 | Structured version Visualization version GIF version |
Description: Absolute value of a power, when the exponent is real. (Contributed by Mario Carneiro, 15-Sep-2014.) |
Ref | Expression |
---|---|
abscxp2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) → (abs‘(𝐴↑𝑐𝐵)) = ((abs‘𝐴)↑𝑐𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 11158 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 0) → 0 ∈ ℝ) | |
2 | 0le0 12254 | . . . . . 6 ⊢ 0 ≤ 0 | |
3 | 2 | a1i 11 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 0) → 0 ≤ 0) |
4 | simplr 767 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 0) → 𝐵 ∈ ℝ) | |
5 | recxpcl 26030 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 0 ≤ 0 ∧ 𝐵 ∈ ℝ) → (0↑𝑐𝐵) ∈ ℝ) | |
6 | 1, 3, 4, 5 | syl3anc 1371 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 0) → (0↑𝑐𝐵) ∈ ℝ) |
7 | cxpge0 26038 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 0 ≤ 0 ∧ 𝐵 ∈ ℝ) → 0 ≤ (0↑𝑐𝐵)) | |
8 | 1, 3, 4, 7 | syl3anc 1371 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 0) → 0 ≤ (0↑𝑐𝐵)) |
9 | 6, 8 | absidd 15307 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 0) → (abs‘(0↑𝑐𝐵)) = (0↑𝑐𝐵)) |
10 | simpr 485 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 0) → 𝐴 = 0) | |
11 | 10 | oveq1d 7372 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 0) → (𝐴↑𝑐𝐵) = (0↑𝑐𝐵)) |
12 | 11 | fveq2d 6846 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 0) → (abs‘(𝐴↑𝑐𝐵)) = (abs‘(0↑𝑐𝐵))) |
13 | 10 | abs00bd 15176 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 0) → (abs‘𝐴) = 0) |
14 | 13 | oveq1d 7372 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 0) → ((abs‘𝐴)↑𝑐𝐵) = (0↑𝑐𝐵)) |
15 | 9, 12, 14 | 3eqtr4d 2786 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 0) → (abs‘(𝐴↑𝑐𝐵)) = ((abs‘𝐴)↑𝑐𝐵)) |
16 | simplr 767 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → 𝐵 ∈ ℝ) | |
17 | 16 | recnd 11183 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → 𝐵 ∈ ℂ) |
18 | logcl 25924 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ) | |
19 | 18 | adantlr 713 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ) |
20 | 17, 19 | mulcld 11175 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (𝐵 · (log‘𝐴)) ∈ ℂ) |
21 | absef 16079 | . . . . 5 ⊢ ((𝐵 · (log‘𝐴)) ∈ ℂ → (abs‘(exp‘(𝐵 · (log‘𝐴)))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴))))) | |
22 | 20, 21 | syl 17 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (abs‘(exp‘(𝐵 · (log‘𝐴)))) = (exp‘(ℜ‘(𝐵 · (log‘𝐴))))) |
23 | 16, 19 | remul2d 15112 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (ℜ‘(𝐵 · (log‘𝐴))) = (𝐵 · (ℜ‘(log‘𝐴)))) |
24 | relog 25952 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) = (log‘(abs‘𝐴))) | |
25 | 24 | adantlr 713 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (ℜ‘(log‘𝐴)) = (log‘(abs‘𝐴))) |
26 | 25 | oveq2d 7373 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (𝐵 · (ℜ‘(log‘𝐴))) = (𝐵 · (log‘(abs‘𝐴)))) |
27 | 23, 26 | eqtrd 2776 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (ℜ‘(𝐵 · (log‘𝐴))) = (𝐵 · (log‘(abs‘𝐴)))) |
28 | 27 | fveq2d 6846 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (exp‘(ℜ‘(𝐵 · (log‘𝐴)))) = (exp‘(𝐵 · (log‘(abs‘𝐴))))) |
29 | 22, 28 | eqtrd 2776 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (abs‘(exp‘(𝐵 · (log‘𝐴)))) = (exp‘(𝐵 · (log‘(abs‘𝐴))))) |
30 | simpll 765 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ) | |
31 | simpr 485 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → 𝐴 ≠ 0) | |
32 | cxpef 26020 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) | |
33 | 30, 31, 17, 32 | syl3anc 1371 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) |
34 | 33 | fveq2d 6846 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (abs‘(𝐴↑𝑐𝐵)) = (abs‘(exp‘(𝐵 · (log‘𝐴))))) |
35 | 30 | abscld 15321 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ) |
36 | 35 | recnd 11183 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℂ) |
37 | abs00 15174 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((abs‘𝐴) = 0 ↔ 𝐴 = 0)) | |
38 | 37 | adantr 481 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) = 0 ↔ 𝐴 = 0)) |
39 | 38 | necon3bid 2988 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0)) |
40 | 39 | biimpar 478 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (abs‘𝐴) ≠ 0) |
41 | cxpef 26020 | . . . 4 ⊢ (((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ≠ 0 ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴)↑𝑐𝐵) = (exp‘(𝐵 · (log‘(abs‘𝐴))))) | |
42 | 36, 40, 17, 41 | syl3anc 1371 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → ((abs‘𝐴)↑𝑐𝐵) = (exp‘(𝐵 · (log‘(abs‘𝐴))))) |
43 | 29, 34, 42 | 3eqtr4d 2786 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (abs‘(𝐴↑𝑐𝐵)) = ((abs‘𝐴)↑𝑐𝐵)) |
44 | 15, 43 | pm2.61dane 3032 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) → (abs‘(𝐴↑𝑐𝐵)) = ((abs‘𝐴)↑𝑐𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5105 ‘cfv 6496 (class class class)co 7357 ℂcc 11049 ℝcr 11050 0cc0 11051 · cmul 11056 ≤ cle 11190 ℜcre 14982 abscabs 15119 expce 15944 logclog 25910 ↑𝑐ccxp 25911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-addf 11130 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8648 df-map 8767 df-pm 8768 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-fi 9347 df-sup 9378 df-inf 9379 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13268 df-ioc 13269 df-ico 13270 df-icc 13271 df-fz 13425 df-fzo 13568 df-fl 13697 df-mod 13775 df-seq 13907 df-exp 13968 df-fac 14174 df-bc 14203 df-hash 14231 df-shft 14952 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-limsup 15353 df-clim 15370 df-rlim 15371 df-sum 15571 df-ef 15950 df-sin 15952 df-cos 15953 df-pi 15955 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-hom 17157 df-cco 17158 df-rest 17304 df-topn 17305 df-0g 17323 df-gsum 17324 df-topgen 17325 df-pt 17326 df-prds 17329 df-xrs 17384 df-qtop 17389 df-imas 17390 df-xps 17392 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-mulg 18873 df-cntz 19097 df-cmn 19564 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-fbas 20793 df-fg 20794 df-cnfld 20797 df-top 22243 df-topon 22260 df-topsp 22282 df-bases 22296 df-cld 22370 df-ntr 22371 df-cls 22372 df-nei 22449 df-lp 22487 df-perf 22488 df-cn 22578 df-cnp 22579 df-haus 22666 df-tx 22913 df-hmeo 23106 df-fil 23197 df-fm 23289 df-flim 23290 df-flf 23291 df-xms 23673 df-ms 23674 df-tms 23675 df-cncf 24241 df-limc 25230 df-dv 25231 df-log 25912 df-cxp 25913 |
This theorem is referenced by: root1cj 26109 rlimcxp 26323 |
Copyright terms: Public domain | W3C validator |