| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cxpefd | Structured version Visualization version GIF version | ||
| Description: Value of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.) |
| Ref | Expression |
|---|---|
| cxp0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| cxpefd.2 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| cxpefd.3 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| cxpefd | ⊢ (𝜑 → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cxp0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | cxpefd.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 3 | cxpefd.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | cxpef 26550 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 0cc0 11044 · cmul 11049 expce 16003 logclog 26439 ↑𝑐ccxp 26440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-mulcl 11106 ax-i2m1 11112 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-cxp 26442 |
| This theorem is referenced by: dvcxp1 26625 dvcxp2 26626 dvcncxp1 26628 cxpcn 26630 cxpcnOLD 26631 abscxpbnd 26639 root1eq1 26641 cxpeq 26643 cxplogb 26672 efiatan 26798 efiatan2 26803 efrlim 26855 efrlimOLD 26856 cxp2limlem 26862 cxploglim 26864 amgmlem 26876 zetacvg 26901 gamcvg2lem 26945 bposlem9 27179 chtppilimlem1 27360 ostth2lem4 27523 ostth2 27524 ostth3 27525 iprodgam 35702 aks4d1p1p1 42024 cxp112d 42302 cxp111d 42303 proot1ex 43158 logcxp0 48497 |
| Copyright terms: Public domain | W3C validator |