| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cxpefd | Structured version Visualization version GIF version | ||
| Description: Value of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.) |
| Ref | Expression |
|---|---|
| cxp0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| cxpefd.2 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| cxpefd.3 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| cxpefd | ⊢ (𝜑 → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cxp0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | cxpefd.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 3 | cxpefd.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | cxpef 26574 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 0cc0 11068 · cmul 11073 expce 16027 logclog 26463 ↑𝑐ccxp 26464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-i2m1 11136 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-cxp 26466 |
| This theorem is referenced by: dvcxp1 26649 dvcxp2 26650 dvcncxp1 26652 cxpcn 26654 cxpcnOLD 26655 abscxpbnd 26663 root1eq1 26665 cxpeq 26667 cxplogb 26696 efiatan 26822 efiatan2 26827 efrlim 26879 efrlimOLD 26880 cxp2limlem 26886 cxploglim 26888 amgmlem 26900 zetacvg 26925 gamcvg2lem 26969 bposlem9 27203 chtppilimlem1 27384 ostth2lem4 27547 ostth2 27548 ostth3 27549 iprodgam 35729 aks4d1p1p1 42051 cxp112d 42329 cxp111d 42330 proot1ex 43185 logcxp0 48524 |
| Copyright terms: Public domain | W3C validator |