| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cxpefd | Structured version Visualization version GIF version | ||
| Description: Value of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.) |
| Ref | Expression |
|---|---|
| cxp0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| cxpefd.2 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| cxpefd.3 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| cxpefd | ⊢ (𝜑 → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cxp0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | cxpefd.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 3 | cxpefd.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | cxpef 26581 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 0cc0 11075 · cmul 11080 expce 16034 logclog 26470 ↑𝑐ccxp 26471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-mulcl 11137 ax-i2m1 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-cxp 26473 |
| This theorem is referenced by: dvcxp1 26656 dvcxp2 26657 dvcncxp1 26659 cxpcn 26661 cxpcnOLD 26662 abscxpbnd 26670 root1eq1 26672 cxpeq 26674 cxplogb 26703 efiatan 26829 efiatan2 26834 efrlim 26886 efrlimOLD 26887 cxp2limlem 26893 cxploglim 26895 amgmlem 26907 zetacvg 26932 gamcvg2lem 26976 bposlem9 27210 chtppilimlem1 27391 ostth2lem4 27554 ostth2 27555 ostth3 27556 iprodgam 35736 aks4d1p1p1 42058 cxp112d 42336 cxp111d 42337 proot1ex 43192 logcxp0 48528 |
| Copyright terms: Public domain | W3C validator |