| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cxpefd | Structured version Visualization version GIF version | ||
| Description: Value of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.) |
| Ref | Expression |
|---|---|
| cxp0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| cxpefd.2 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| cxpefd.3 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| cxpefd | ⊢ (𝜑 → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cxp0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | cxpefd.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 3 | cxpefd.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | cxpef 26626 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 0cc0 11129 · cmul 11134 expce 16077 logclog 26515 ↑𝑐ccxp 26516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-mulcl 11191 ax-i2m1 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-cxp 26518 |
| This theorem is referenced by: dvcxp1 26701 dvcxp2 26702 dvcncxp1 26704 cxpcn 26706 cxpcnOLD 26707 abscxpbnd 26715 root1eq1 26717 cxpeq 26719 cxplogb 26748 efiatan 26874 efiatan2 26879 efrlim 26931 efrlimOLD 26932 cxp2limlem 26938 cxploglim 26940 amgmlem 26952 zetacvg 26977 gamcvg2lem 27021 bposlem9 27255 chtppilimlem1 27436 ostth2lem4 27599 ostth2 27600 ostth3 27601 iprodgam 35759 aks4d1p1p1 42076 cxp112d 42390 cxp111d 42391 proot1ex 43220 logcxp0 48515 |
| Copyright terms: Public domain | W3C validator |