![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cxpefd | Structured version Visualization version GIF version |
Description: Value of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.) |
Ref | Expression |
---|---|
cxp0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
cxpefd.2 | ⊢ (𝜑 → 𝐴 ≠ 0) |
cxpefd.3 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
cxpefd | ⊢ (𝜑 → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cxp0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | cxpefd.2 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
3 | cxpefd.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | cxpef 26725 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) | |
5 | 1, 2, 3, 4 | syl3anc 1371 | 1 ⊢ (𝜑 → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 0cc0 11184 · cmul 11189 expce 16109 logclog 26614 ↑𝑐ccxp 26615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-mulcl 11246 ax-i2m1 11252 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-cxp 26617 |
This theorem is referenced by: dvcxp1 26800 dvcxp2 26801 dvcncxp1 26803 cxpcn 26805 cxpcnOLD 26806 abscxpbnd 26814 root1eq1 26816 cxpeq 26818 cxplogb 26847 efiatan 26973 efiatan2 26978 efrlim 27030 efrlimOLD 27031 cxp2limlem 27037 cxploglim 27039 amgmlem 27051 zetacvg 27076 gamcvg2lem 27120 bposlem9 27354 chtppilimlem1 27535 ostth2lem4 27698 ostth2 27699 ostth3 27700 iprodgam 35704 aks4d1p1p1 42020 cxp112d 42329 cxp111d 42330 proot1ex 43157 logcxp0 48269 |
Copyright terms: Public domain | W3C validator |