MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcxp Structured version   Visualization version   GIF version

Theorem mulcxp 26631
Description: Complex exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
mulcxp (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (𝐵𝑐𝐶)))

Proof of Theorem mulcxp
StepHypRef Expression
1 simp1l 1198 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℝ)
21recnd 11150 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ)
32mul01d 11322 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → (𝐴 · 0) = 0)
43oveq1d 7370 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → ((𝐴 · 0)↑𝑐𝐶) = (0↑𝑐𝐶))
5 simp3 1138 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
62, 5mulcxplem 26630 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → (0↑𝑐𝐶) = ((𝐴𝑐𝐶) · (0↑𝑐𝐶)))
74, 6eqtrd 2768 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → ((𝐴 · 0)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (0↑𝑐𝐶)))
8 oveq2 7363 . . . . 5 (𝐵 = 0 → (𝐴 · 𝐵) = (𝐴 · 0))
98oveq1d 7370 . . . 4 (𝐵 = 0 → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴 · 0)↑𝑐𝐶))
10 oveq1 7362 . . . . 5 (𝐵 = 0 → (𝐵𝑐𝐶) = (0↑𝑐𝐶))
1110oveq2d 7371 . . . 4 (𝐵 = 0 → ((𝐴𝑐𝐶) · (𝐵𝑐𝐶)) = ((𝐴𝑐𝐶) · (0↑𝑐𝐶)))
129, 11eqeq12d 2749 . . 3 (𝐵 = 0 → (((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (𝐵𝑐𝐶)) ↔ ((𝐴 · 0)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (0↑𝑐𝐶))))
137, 12syl5ibrcom 247 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → (𝐵 = 0 → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (𝐵𝑐𝐶))))
14 simp2l 1200 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℝ)
1514recnd 11150 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℂ)
1615mul02d 11321 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → (0 · 𝐵) = 0)
1716oveq1d 7370 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → ((0 · 𝐵)↑𝑐𝐶) = (0↑𝑐𝐶))
1815, 5mulcxplem 26630 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → (0↑𝑐𝐶) = ((𝐵𝑐𝐶) · (0↑𝑐𝐶)))
19 cxpcl 26620 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝑐𝐶) ∈ ℂ)
2015, 5, 19syl2anc 584 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → (𝐵𝑐𝐶) ∈ ℂ)
21 0cn 11114 . . . . . . . . 9 0 ∈ ℂ
22 cxpcl 26620 . . . . . . . . 9 ((0 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (0↑𝑐𝐶) ∈ ℂ)
2321, 5, 22sylancr 587 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → (0↑𝑐𝐶) ∈ ℂ)
2420, 23mulcomd 11143 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → ((𝐵𝑐𝐶) · (0↑𝑐𝐶)) = ((0↑𝑐𝐶) · (𝐵𝑐𝐶)))
2518, 24eqtrd 2768 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → (0↑𝑐𝐶) = ((0↑𝑐𝐶) · (𝐵𝑐𝐶)))
2617, 25eqtrd 2768 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → ((0 · 𝐵)↑𝑐𝐶) = ((0↑𝑐𝐶) · (𝐵𝑐𝐶)))
27 oveq1 7362 . . . . . . 7 (𝐴 = 0 → (𝐴 · 𝐵) = (0 · 𝐵))
2827oveq1d 7370 . . . . . 6 (𝐴 = 0 → ((𝐴 · 𝐵)↑𝑐𝐶) = ((0 · 𝐵)↑𝑐𝐶))
29 oveq1 7362 . . . . . . 7 (𝐴 = 0 → (𝐴𝑐𝐶) = (0↑𝑐𝐶))
3029oveq1d 7370 . . . . . 6 (𝐴 = 0 → ((𝐴𝑐𝐶) · (𝐵𝑐𝐶)) = ((0↑𝑐𝐶) · (𝐵𝑐𝐶)))
3128, 30eqeq12d 2749 . . . . 5 (𝐴 = 0 → (((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (𝐵𝑐𝐶)) ↔ ((0 · 𝐵)↑𝑐𝐶) = ((0↑𝑐𝐶) · (𝐵𝑐𝐶))))
3226, 31syl5ibrcom 247 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → (𝐴 = 0 → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (𝐵𝑐𝐶))))
3332a1dd 50 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → (𝐴 = 0 → (𝐵 ≠ 0 → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (𝐵𝑐𝐶)))))
341adantr 480 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℝ)
35 simpl1r 1226 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 0 ≤ 𝐴)
36 simprl 770 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ≠ 0)
3734, 35, 36ne0gt0d 11260 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 0 < 𝐴)
3834, 37elrpd 12941 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℝ+)
3914adantr 480 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℝ)
40 simpl2r 1228 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 0 ≤ 𝐵)
41 simprr 772 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ≠ 0)
4239, 40, 41ne0gt0d 11260 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 0 < 𝐵)
4339, 42elrpd 12941 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℝ+)
4438, 43relogmuld 26571 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (log‘(𝐴 · 𝐵)) = ((log‘𝐴) + (log‘𝐵)))
4544oveq2d 7371 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐶 · (log‘(𝐴 · 𝐵))) = (𝐶 · ((log‘𝐴) + (log‘𝐵))))
465adantr 480 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐶 ∈ ℂ)
472adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ∈ ℂ)
4847, 36logcld 26516 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (log‘𝐴) ∈ ℂ)
4915adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ∈ ℂ)
5049, 41logcld 26516 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (log‘𝐵) ∈ ℂ)
5146, 48, 50adddid 11146 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐶 · ((log‘𝐴) + (log‘𝐵))) = ((𝐶 · (log‘𝐴)) + (𝐶 · (log‘𝐵))))
5245, 51eqtrd 2768 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐶 · (log‘(𝐴 · 𝐵))) = ((𝐶 · (log‘𝐴)) + (𝐶 · (log‘𝐵))))
5352fveq2d 6835 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (exp‘(𝐶 · (log‘(𝐴 · 𝐵)))) = (exp‘((𝐶 · (log‘𝐴)) + (𝐶 · (log‘𝐵)))))
5446, 48mulcld 11142 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐶 · (log‘𝐴)) ∈ ℂ)
5546, 50mulcld 11142 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐶 · (log‘𝐵)) ∈ ℂ)
56 efadd 16011 . . . . . . 7 (((𝐶 · (log‘𝐴)) ∈ ℂ ∧ (𝐶 · (log‘𝐵)) ∈ ℂ) → (exp‘((𝐶 · (log‘𝐴)) + (𝐶 · (log‘𝐵)))) = ((exp‘(𝐶 · (log‘𝐴))) · (exp‘(𝐶 · (log‘𝐵)))))
5754, 55, 56syl2anc 584 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (exp‘((𝐶 · (log‘𝐴)) + (𝐶 · (log‘𝐵)))) = ((exp‘(𝐶 · (log‘𝐴))) · (exp‘(𝐶 · (log‘𝐵)))))
5853, 57eqtrd 2768 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (exp‘(𝐶 · (log‘(𝐴 · 𝐵)))) = ((exp‘(𝐶 · (log‘𝐴))) · (exp‘(𝐶 · (log‘𝐵)))))
5947, 49mulcld 11142 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ∈ ℂ)
6047, 49, 36, 41mulne0d 11779 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴 · 𝐵) ≠ 0)
61 cxpef 26611 . . . . . 6 (((𝐴 · 𝐵) ∈ ℂ ∧ (𝐴 · 𝐵) ≠ 0 ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑐𝐶) = (exp‘(𝐶 · (log‘(𝐴 · 𝐵)))))
6259, 60, 46, 61syl3anc 1373 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵)↑𝑐𝐶) = (exp‘(𝐶 · (log‘(𝐴 · 𝐵)))))
63 cxpef 26611 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐶 ∈ ℂ) → (𝐴𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴))))
6447, 36, 46, 63syl3anc 1373 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐴𝑐𝐶) = (exp‘(𝐶 · (log‘𝐴))))
65 cxpef 26611 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐶 ∈ ℂ) → (𝐵𝑐𝐶) = (exp‘(𝐶 · (log‘𝐵))))
6649, 41, 46, 65syl3anc 1373 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → (𝐵𝑐𝐶) = (exp‘(𝐶 · (log‘𝐵))))
6764, 66oveq12d 7373 . . . . 5 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴𝑐𝐶) · (𝐵𝑐𝐶)) = ((exp‘(𝐶 · (log‘𝐴))) · (exp‘(𝐶 · (log‘𝐵)))))
6858, 62, 673eqtr4d 2778 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (𝐵𝑐𝐶)))
6968exp32 420 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → (𝐴 ≠ 0 → (𝐵 ≠ 0 → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (𝐵𝑐𝐶)))))
7033, 69pm2.61dne 3016 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → (𝐵 ≠ 0 → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (𝐵𝑐𝐶))))
7113, 70pm2.61dne 3016 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵)↑𝑐𝐶) = ((𝐴𝑐𝐶) · (𝐵𝑐𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2930   class class class wbr 5095  cfv 6489  (class class class)co 7355  cc 11014  cr 11015  0cc0 11016   + caddc 11019   · cmul 11021  cle 11157  expce 15978  logclog 26500  𝑐ccxp 26501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094  ax-addf 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8831  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fsupp 9256  df-fi 9305  df-sup 9336  df-inf 9337  df-oi 9406  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-z 12479  df-dec 12599  df-uz 12743  df-q 12857  df-rp 12901  df-xneg 13021  df-xadd 13022  df-xmul 13023  df-ioo 13259  df-ioc 13260  df-ico 13261  df-icc 13262  df-fz 13418  df-fzo 13565  df-fl 13706  df-mod 13784  df-seq 13919  df-exp 13979  df-fac 14191  df-bc 14220  df-hash 14248  df-shft 14984  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-limsup 15388  df-clim 15405  df-rlim 15406  df-sum 15604  df-ef 15984  df-sin 15986  df-cos 15987  df-pi 15989  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-starv 17186  df-sca 17187  df-vsca 17188  df-ip 17189  df-tset 17190  df-ple 17191  df-ds 17193  df-unif 17194  df-hom 17195  df-cco 17196  df-rest 17336  df-topn 17337  df-0g 17355  df-gsum 17356  df-topgen 17357  df-pt 17358  df-prds 17361  df-xrs 17416  df-qtop 17421  df-imas 17422  df-xps 17424  df-mre 17498  df-mrc 17499  df-acs 17501  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-submnd 18702  df-mulg 18991  df-cntz 19239  df-cmn 19704  df-psmet 21293  df-xmet 21294  df-met 21295  df-bl 21296  df-mopn 21297  df-fbas 21298  df-fg 21299  df-cnfld 21302  df-top 22819  df-topon 22836  df-topsp 22858  df-bases 22871  df-cld 22944  df-ntr 22945  df-cls 22946  df-nei 23023  df-lp 23061  df-perf 23062  df-cn 23152  df-cnp 23153  df-haus 23240  df-tx 23487  df-hmeo 23680  df-fil 23771  df-fm 23863  df-flim 23864  df-flf 23865  df-xms 24245  df-ms 24246  df-tms 24247  df-cncf 24808  df-limc 25804  df-dv 25805  df-log 26502  df-cxp 26503
This theorem is referenced by:  cxprec  26632  divcxp  26633  mulcxpd  26674  amgmlemALT  49918
  Copyright terms: Public domain W3C validator