Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpcxpcl | Structured version Visualization version GIF version |
Description: Positive real closure of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.) |
Ref | Expression |
---|---|
rpcxpcl | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (𝐴↑𝑐𝐵) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rprege0 12818 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) | |
2 | recxpcl 25902 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ) → (𝐴↑𝑐𝐵) ∈ ℝ) | |
3 | 2 | 3expa 1117 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) → (𝐴↑𝑐𝐵) ∈ ℝ) |
4 | 1, 3 | sylan 580 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (𝐴↑𝑐𝐵) ∈ ℝ) |
5 | id 22 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ) | |
6 | relogcl 25803 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ) | |
7 | remulcl 11029 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ (log‘𝐴) ∈ ℝ) → (𝐵 · (log‘𝐴)) ∈ ℝ) | |
8 | 5, 6, 7 | syl2anr 597 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (𝐵 · (log‘𝐴)) ∈ ℝ) |
9 | efgt0 15884 | . . . 4 ⊢ ((𝐵 · (log‘𝐴)) ∈ ℝ → 0 < (exp‘(𝐵 · (log‘𝐴)))) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → 0 < (exp‘(𝐵 · (log‘𝐴)))) |
11 | rpcnne0 12821 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) | |
12 | recn 11034 | . . . 4 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
13 | cxpef 25892 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) | |
14 | 13 | 3expa 1117 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) |
15 | 11, 12, 14 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) |
16 | 10, 15 | breqtrrd 5115 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → 0 < (𝐴↑𝑐𝐵)) |
17 | 4, 16 | elrpd 12842 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (𝐴↑𝑐𝐵) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 class class class wbr 5087 ‘cfv 6465 (class class class)co 7315 ℂcc 10942 ℝcr 10943 0cc0 10944 · cmul 10949 < clt 11082 ≤ cle 11083 ℝ+crp 12803 expce 15843 logclog 25782 ↑𝑐ccxp 25783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-inf2 9470 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 ax-pre-sup 11022 ax-addf 11023 ax-mulf 11024 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-iin 4940 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-of 7573 df-om 7758 df-1st 7876 df-2nd 7877 df-supp 8025 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-1o 8344 df-2o 8345 df-er 8546 df-map 8665 df-pm 8666 df-ixp 8734 df-en 8782 df-dom 8783 df-sdom 8784 df-fin 8785 df-fsupp 9199 df-fi 9240 df-sup 9271 df-inf 9272 df-oi 9339 df-card 9768 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-div 11706 df-nn 12047 df-2 12109 df-3 12110 df-4 12111 df-5 12112 df-6 12113 df-7 12114 df-8 12115 df-9 12116 df-n0 12307 df-z 12393 df-dec 12511 df-uz 12656 df-q 12762 df-rp 12804 df-xneg 12921 df-xadd 12922 df-xmul 12923 df-ioo 13156 df-ioc 13157 df-ico 13158 df-icc 13159 df-fz 13313 df-fzo 13456 df-fl 13585 df-mod 13663 df-seq 13795 df-exp 13856 df-fac 14061 df-bc 14090 df-hash 14118 df-shft 14850 df-cj 14882 df-re 14883 df-im 14884 df-sqrt 15018 df-abs 15019 df-limsup 15252 df-clim 15269 df-rlim 15270 df-sum 15470 df-ef 15849 df-sin 15851 df-cos 15852 df-pi 15854 df-struct 16918 df-sets 16935 df-slot 16953 df-ndx 16965 df-base 16983 df-ress 17012 df-plusg 17045 df-mulr 17046 df-starv 17047 df-sca 17048 df-vsca 17049 df-ip 17050 df-tset 17051 df-ple 17052 df-ds 17054 df-unif 17055 df-hom 17056 df-cco 17057 df-rest 17203 df-topn 17204 df-0g 17222 df-gsum 17223 df-topgen 17224 df-pt 17225 df-prds 17228 df-xrs 17283 df-qtop 17288 df-imas 17289 df-xps 17291 df-mre 17365 df-mrc 17366 df-acs 17368 df-mgm 18396 df-sgrp 18445 df-mnd 18456 df-submnd 18501 df-mulg 18770 df-cntz 18992 df-cmn 19456 df-psmet 20661 df-xmet 20662 df-met 20663 df-bl 20664 df-mopn 20665 df-fbas 20666 df-fg 20667 df-cnfld 20670 df-top 22115 df-topon 22132 df-topsp 22154 df-bases 22168 df-cld 22242 df-ntr 22243 df-cls 22244 df-nei 22321 df-lp 22359 df-perf 22360 df-cn 22450 df-cnp 22451 df-haus 22538 df-tx 22785 df-hmeo 22978 df-fil 23069 df-fm 23161 df-flim 23162 df-flf 23163 df-xms 23545 df-ms 23546 df-tms 23547 df-cncf 24113 df-limc 25102 df-dv 25103 df-log 25784 df-cxp 25785 |
This theorem is referenced by: cxpge0 25910 cxple2 25924 cxplt3 25927 cxple3 25928 cxpsqrt 25930 rpcxpcld 25959 relogbmulexp 26000 cxplim 26193 cxp2limlem 26197 zetacvg 26236 bposlem6 26509 logdivsqrle 32736 amgmwlem 46758 |
Copyright terms: Public domain | W3C validator |