Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djaclN Structured version   Visualization version   GIF version

Theorem djaclN 41133
Description: Closure of subspace join for DVecA partial vector space. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
djacl.h 𝐻 = (LHyp‘𝐾)
djacl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
djacl.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
djacl.j 𝐽 = ((vA‘𝐾)‘𝑊)
Assertion
Ref Expression
djaclN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → (𝑋𝐽𝑌) ∈ ran 𝐼)

Proof of Theorem djaclN
StepHypRef Expression
1 djacl.h . . 3 𝐻 = (LHyp‘𝐾)
2 djacl.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 djacl.i . . 3 𝐼 = ((DIsoA‘𝐾)‘𝑊)
4 eqid 2737 . . 3 ((ocA‘𝐾)‘𝑊) = ((ocA‘𝐾)‘𝑊)
5 djacl.j . . 3 𝐽 = ((vA‘𝐾)‘𝑊)
61, 2, 3, 4, 5djavalN 41132 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → (𝑋𝐽𝑌) = (((ocA‘𝐾)‘𝑊)‘((((ocA‘𝐾)‘𝑊)‘𝑋) ∩ (((ocA‘𝐾)‘𝑊)‘𝑌))))
7 inss1 4248 . . . 4 ((((ocA‘𝐾)‘𝑊)‘𝑋) ∩ (((ocA‘𝐾)‘𝑊)‘𝑌)) ⊆ (((ocA‘𝐾)‘𝑊)‘𝑋)
81, 2, 3, 4docaclN 41121 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → (((ocA‘𝐾)‘𝑊)‘𝑋) ∈ ran 𝐼)
98adantrr 717 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → (((ocA‘𝐾)‘𝑊)‘𝑋) ∈ ran 𝐼)
101, 2, 3diaelrnN 41042 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((ocA‘𝐾)‘𝑊)‘𝑋) ∈ ran 𝐼) → (((ocA‘𝐾)‘𝑊)‘𝑋) ⊆ 𝑇)
119, 10syldan 591 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → (((ocA‘𝐾)‘𝑊)‘𝑋) ⊆ 𝑇)
127, 11sstrid 4010 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → ((((ocA‘𝐾)‘𝑊)‘𝑋) ∩ (((ocA‘𝐾)‘𝑊)‘𝑌)) ⊆ 𝑇)
131, 2, 3, 4docaclN 41121 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((((ocA‘𝐾)‘𝑊)‘𝑋) ∩ (((ocA‘𝐾)‘𝑊)‘𝑌)) ⊆ 𝑇) → (((ocA‘𝐾)‘𝑊)‘((((ocA‘𝐾)‘𝑊)‘𝑋) ∩ (((ocA‘𝐾)‘𝑊)‘𝑌))) ∈ ran 𝐼)
1412, 13syldan 591 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → (((ocA‘𝐾)‘𝑊)‘((((ocA‘𝐾)‘𝑊)‘𝑋) ∩ (((ocA‘𝐾)‘𝑊)‘𝑌))) ∈ ran 𝐼)
156, 14eqeltrd 2841 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → (𝑋𝐽𝑌) ∈ ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cin 3965  wss 3966  ran crn 5694  cfv 6569  (class class class)co 7438  HLchlt 39346  LHypclh 39981  LTrncltrn 40098  DIsoAcdia 41025  ocAcocaN 41116  vAcdjaN 41128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-riotaBAD 38949
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-iin 5002  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023  df-undef 8306  df-map 8876  df-proset 18361  df-poset 18380  df-plt 18397  df-lub 18413  df-glb 18414  df-join 18415  df-meet 18416  df-p0 18492  df-p1 18493  df-lat 18499  df-clat 18566  df-oposet 39172  df-ol 39174  df-oml 39175  df-covers 39262  df-ats 39263  df-atl 39294  df-cvlat 39318  df-hlat 39347  df-llines 39495  df-lplanes 39496  df-lvols 39497  df-lines 39498  df-psubsp 39500  df-pmap 39501  df-padd 39793  df-lhyp 39985  df-laut 39986  df-ldil 40101  df-ltrn 40102  df-trl 40156  df-disoa 41026  df-docaN 41117  df-djaN 41129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator