Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  djaclN Structured version   Visualization version   GIF version

Theorem djaclN 39996
Description: Closure of subspace join for DVecA partial vector space. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
djacl.h 𝐻 = (LHyp‘𝐾)
djacl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
djacl.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
djacl.j 𝐽 = ((vA‘𝐾)‘𝑊)
Assertion
Ref Expression
djaclN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → (𝑋𝐽𝑌) ∈ ran 𝐼)

Proof of Theorem djaclN
StepHypRef Expression
1 djacl.h . . 3 𝐻 = (LHyp‘𝐾)
2 djacl.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 djacl.i . . 3 𝐼 = ((DIsoA‘𝐾)‘𝑊)
4 eqid 2733 . . 3 ((ocA‘𝐾)‘𝑊) = ((ocA‘𝐾)‘𝑊)
5 djacl.j . . 3 𝐽 = ((vA‘𝐾)‘𝑊)
61, 2, 3, 4, 5djavalN 39995 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → (𝑋𝐽𝑌) = (((ocA‘𝐾)‘𝑊)‘((((ocA‘𝐾)‘𝑊)‘𝑋) ∩ (((ocA‘𝐾)‘𝑊)‘𝑌))))
7 inss1 4228 . . . 4 ((((ocA‘𝐾)‘𝑊)‘𝑋) ∩ (((ocA‘𝐾)‘𝑊)‘𝑌)) ⊆ (((ocA‘𝐾)‘𝑊)‘𝑋)
81, 2, 3, 4docaclN 39984 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇) → (((ocA‘𝐾)‘𝑊)‘𝑋) ∈ ran 𝐼)
98adantrr 716 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → (((ocA‘𝐾)‘𝑊)‘𝑋) ∈ ran 𝐼)
101, 2, 3diaelrnN 39905 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((ocA‘𝐾)‘𝑊)‘𝑋) ∈ ran 𝐼) → (((ocA‘𝐾)‘𝑊)‘𝑋) ⊆ 𝑇)
119, 10syldan 592 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → (((ocA‘𝐾)‘𝑊)‘𝑋) ⊆ 𝑇)
127, 11sstrid 3993 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → ((((ocA‘𝐾)‘𝑊)‘𝑋) ∩ (((ocA‘𝐾)‘𝑊)‘𝑌)) ⊆ 𝑇)
131, 2, 3, 4docaclN 39984 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((((ocA‘𝐾)‘𝑊)‘𝑋) ∩ (((ocA‘𝐾)‘𝑊)‘𝑌)) ⊆ 𝑇) → (((ocA‘𝐾)‘𝑊)‘((((ocA‘𝐾)‘𝑊)‘𝑋) ∩ (((ocA‘𝐾)‘𝑊)‘𝑌))) ∈ ran 𝐼)
1412, 13syldan 592 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → (((ocA‘𝐾)‘𝑊)‘((((ocA‘𝐾)‘𝑊)‘𝑋) ∩ (((ocA‘𝐾)‘𝑊)‘𝑌))) ∈ ran 𝐼)
156, 14eqeltrd 2834 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝑌𝑇)) → (𝑋𝐽𝑌) ∈ ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  cin 3947  wss 3948  ran crn 5677  cfv 6541  (class class class)co 7406  HLchlt 38209  LHypclh 38844  LTrncltrn 38961  DIsoAcdia 39888  ocAcocaN 39979  vAcdjaN 39991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-riotaBAD 37812
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-1st 7972  df-2nd 7973  df-undef 8255  df-map 8819  df-proset 18245  df-poset 18263  df-plt 18280  df-lub 18296  df-glb 18297  df-join 18298  df-meet 18299  df-p0 18375  df-p1 18376  df-lat 18382  df-clat 18449  df-oposet 38035  df-ol 38037  df-oml 38038  df-covers 38125  df-ats 38126  df-atl 38157  df-cvlat 38181  df-hlat 38210  df-llines 38358  df-lplanes 38359  df-lvols 38360  df-lines 38361  df-psubsp 38363  df-pmap 38364  df-padd 38656  df-lhyp 38848  df-laut 38849  df-ldil 38964  df-ltrn 38965  df-trl 39019  df-disoa 39889  df-docaN 39980  df-djaN 39992
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator