| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > djaclN | Structured version Visualization version GIF version | ||
| Description: Closure of subspace join for DVecA partial vector space. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| djacl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| djacl.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| djacl.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
| djacl.j | ⊢ 𝐽 = ((vA‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| djaclN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ⊆ 𝑇 ∧ 𝑌 ⊆ 𝑇)) → (𝑋𝐽𝑌) ∈ ran 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djacl.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | djacl.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 3 | djacl.i | . . 3 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
| 4 | eqid 2729 | . . 3 ⊢ ((ocA‘𝐾)‘𝑊) = ((ocA‘𝐾)‘𝑊) | |
| 5 | djacl.j | . . 3 ⊢ 𝐽 = ((vA‘𝐾)‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | djavalN 41122 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ⊆ 𝑇 ∧ 𝑌 ⊆ 𝑇)) → (𝑋𝐽𝑌) = (((ocA‘𝐾)‘𝑊)‘((((ocA‘𝐾)‘𝑊)‘𝑋) ∩ (((ocA‘𝐾)‘𝑊)‘𝑌)))) |
| 7 | inss1 4196 | . . . 4 ⊢ ((((ocA‘𝐾)‘𝑊)‘𝑋) ∩ (((ocA‘𝐾)‘𝑊)‘𝑌)) ⊆ (((ocA‘𝐾)‘𝑊)‘𝑋) | |
| 8 | 1, 2, 3, 4 | docaclN 41111 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑇) → (((ocA‘𝐾)‘𝑊)‘𝑋) ∈ ran 𝐼) |
| 9 | 8 | adantrr 717 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ⊆ 𝑇 ∧ 𝑌 ⊆ 𝑇)) → (((ocA‘𝐾)‘𝑊)‘𝑋) ∈ ran 𝐼) |
| 10 | 1, 2, 3 | diaelrnN 41032 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (((ocA‘𝐾)‘𝑊)‘𝑋) ∈ ran 𝐼) → (((ocA‘𝐾)‘𝑊)‘𝑋) ⊆ 𝑇) |
| 11 | 9, 10 | syldan 591 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ⊆ 𝑇 ∧ 𝑌 ⊆ 𝑇)) → (((ocA‘𝐾)‘𝑊)‘𝑋) ⊆ 𝑇) |
| 12 | 7, 11 | sstrid 3955 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ⊆ 𝑇 ∧ 𝑌 ⊆ 𝑇)) → ((((ocA‘𝐾)‘𝑊)‘𝑋) ∩ (((ocA‘𝐾)‘𝑊)‘𝑌)) ⊆ 𝑇) |
| 13 | 1, 2, 3, 4 | docaclN 41111 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((((ocA‘𝐾)‘𝑊)‘𝑋) ∩ (((ocA‘𝐾)‘𝑊)‘𝑌)) ⊆ 𝑇) → (((ocA‘𝐾)‘𝑊)‘((((ocA‘𝐾)‘𝑊)‘𝑋) ∩ (((ocA‘𝐾)‘𝑊)‘𝑌))) ∈ ran 𝐼) |
| 14 | 12, 13 | syldan 591 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ⊆ 𝑇 ∧ 𝑌 ⊆ 𝑇)) → (((ocA‘𝐾)‘𝑊)‘((((ocA‘𝐾)‘𝑊)‘𝑋) ∩ (((ocA‘𝐾)‘𝑊)‘𝑌))) ∈ ran 𝐼) |
| 15 | 6, 14 | eqeltrd 2828 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ⊆ 𝑇 ∧ 𝑌 ⊆ 𝑇)) → (𝑋𝐽𝑌) ∈ ran 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 ⊆ wss 3911 ran crn 5632 ‘cfv 6499 (class class class)co 7369 HLchlt 39336 LHypclh 39971 LTrncltrn 40088 DIsoAcdia 41015 ocAcocaN 41106 vAcdjaN 41118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-riotaBAD 38939 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-undef 8229 df-map 8778 df-proset 18235 df-poset 18254 df-plt 18269 df-lub 18285 df-glb 18286 df-join 18287 df-meet 18288 df-p0 18364 df-p1 18365 df-lat 18373 df-clat 18440 df-oposet 39162 df-ol 39164 df-oml 39165 df-covers 39252 df-ats 39253 df-atl 39284 df-cvlat 39308 df-hlat 39337 df-llines 39485 df-lplanes 39486 df-lvols 39487 df-lines 39488 df-psubsp 39490 df-pmap 39491 df-padd 39783 df-lhyp 39975 df-laut 39976 df-ldil 40091 df-ltrn 40092 df-trl 40146 df-disoa 41016 df-docaN 41107 df-djaN 41119 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |