![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > djaclN | Structured version Visualization version GIF version |
Description: Closure of subspace join for DVecA partial vector space. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
djacl.h | β’ π» = (LHypβπΎ) |
djacl.t | β’ π = ((LTrnβπΎ)βπ) |
djacl.i | β’ πΌ = ((DIsoAβπΎ)βπ) |
djacl.j | β’ π½ = ((vAβπΎ)βπ) |
Ref | Expression |
---|---|
djaclN | β’ (((πΎ β HL β§ π β π») β§ (π β π β§ π β π)) β (ππ½π) β ran πΌ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djacl.h | . . 3 β’ π» = (LHypβπΎ) | |
2 | djacl.t | . . 3 β’ π = ((LTrnβπΎ)βπ) | |
3 | djacl.i | . . 3 β’ πΌ = ((DIsoAβπΎ)βπ) | |
4 | eqid 2731 | . . 3 β’ ((ocAβπΎ)βπ) = ((ocAβπΎ)βπ) | |
5 | djacl.j | . . 3 β’ π½ = ((vAβπΎ)βπ) | |
6 | 1, 2, 3, 4, 5 | djavalN 40470 | . 2 β’ (((πΎ β HL β§ π β π») β§ (π β π β§ π β π)) β (ππ½π) = (((ocAβπΎ)βπ)β((((ocAβπΎ)βπ)βπ) β© (((ocAβπΎ)βπ)βπ)))) |
7 | inss1 4228 | . . . 4 β’ ((((ocAβπΎ)βπ)βπ) β© (((ocAβπΎ)βπ)βπ)) β (((ocAβπΎ)βπ)βπ) | |
8 | 1, 2, 3, 4 | docaclN 40459 | . . . . . 6 β’ (((πΎ β HL β§ π β π») β§ π β π) β (((ocAβπΎ)βπ)βπ) β ran πΌ) |
9 | 8 | adantrr 714 | . . . . 5 β’ (((πΎ β HL β§ π β π») β§ (π β π β§ π β π)) β (((ocAβπΎ)βπ)βπ) β ran πΌ) |
10 | 1, 2, 3 | diaelrnN 40380 | . . . . 5 β’ (((πΎ β HL β§ π β π») β§ (((ocAβπΎ)βπ)βπ) β ran πΌ) β (((ocAβπΎ)βπ)βπ) β π) |
11 | 9, 10 | syldan 590 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ (π β π β§ π β π)) β (((ocAβπΎ)βπ)βπ) β π) |
12 | 7, 11 | sstrid 3993 | . . 3 β’ (((πΎ β HL β§ π β π») β§ (π β π β§ π β π)) β ((((ocAβπΎ)βπ)βπ) β© (((ocAβπΎ)βπ)βπ)) β π) |
13 | 1, 2, 3, 4 | docaclN 40459 | . . 3 β’ (((πΎ β HL β§ π β π») β§ ((((ocAβπΎ)βπ)βπ) β© (((ocAβπΎ)βπ)βπ)) β π) β (((ocAβπΎ)βπ)β((((ocAβπΎ)βπ)βπ) β© (((ocAβπΎ)βπ)βπ))) β ran πΌ) |
14 | 12, 13 | syldan 590 | . 2 β’ (((πΎ β HL β§ π β π») β§ (π β π β§ π β π)) β (((ocAβπΎ)βπ)β((((ocAβπΎ)βπ)βπ) β© (((ocAβπΎ)βπ)βπ))) β ran πΌ) |
15 | 6, 14 | eqeltrd 2832 | 1 β’ (((πΎ β HL β§ π β π») β§ (π β π β§ π β π)) β (ππ½π) β ran πΌ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 β© cin 3947 β wss 3948 ran crn 5677 βcfv 6543 (class class class)co 7412 HLchlt 38684 LHypclh 39319 LTrncltrn 39436 DIsoAcdia 40363 ocAcocaN 40454 vAcdjaN 40466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-riotaBAD 38287 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-undef 8264 df-map 8828 df-proset 18258 df-poset 18276 df-plt 18293 df-lub 18309 df-glb 18310 df-join 18311 df-meet 18312 df-p0 18388 df-p1 18389 df-lat 18395 df-clat 18462 df-oposet 38510 df-ol 38512 df-oml 38513 df-covers 38600 df-ats 38601 df-atl 38632 df-cvlat 38656 df-hlat 38685 df-llines 38833 df-lplanes 38834 df-lvols 38835 df-lines 38836 df-psubsp 38838 df-pmap 38839 df-padd 39131 df-lhyp 39323 df-laut 39324 df-ldil 39439 df-ltrn 39440 df-trl 39494 df-disoa 40364 df-docaN 40455 df-djaN 40467 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |