![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvadiaN | Structured version Visualization version GIF version |
Description: Any closed subspace is a member of the range of partial isomorphism A, showing the isomorphism maps onto the set of closed subspaces of partial vector space A. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dvadia.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvadia.u | ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) |
dvadia.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
dvadia.n | ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) |
dvadia.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
Ref | Expression |
---|---|
dvadiaN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝑆 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋)) → 𝑋 ∈ ran 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 791 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝑆 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋)) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) | |
2 | eqid 2825 | . . . . . . . 8 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
3 | dvadia.s | . . . . . . . 8 ⊢ 𝑆 = (LSubSp‘𝑈) | |
4 | 2, 3 | lssss 19293 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑆 → 𝑋 ⊆ (Base‘𝑈)) |
5 | 4 | ad2antrl 721 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝑆 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋)) → 𝑋 ⊆ (Base‘𝑈)) |
6 | dvadia.h | . . . . . . . 8 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | eqid 2825 | . . . . . . . 8 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
8 | dvadia.u | . . . . . . . 8 ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) | |
9 | 6, 7, 8, 2 | dvavbase 37088 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝑈) = ((LTrn‘𝐾)‘𝑊)) |
10 | 9 | adantr 474 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝑆 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋)) → (Base‘𝑈) = ((LTrn‘𝐾)‘𝑊)) |
11 | 5, 10 | sseqtrd 3866 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝑆 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋)) → 𝑋 ⊆ ((LTrn‘𝐾)‘𝑊)) |
12 | dvadia.i | . . . . . 6 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
13 | dvadia.n | . . . . . 6 ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) | |
14 | 6, 7, 12, 13 | docaclN 37199 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ ((LTrn‘𝐾)‘𝑊)) → ( ⊥ ‘𝑋) ∈ ran 𝐼) |
15 | 11, 14 | syldan 587 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝑆 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋)) → ( ⊥ ‘𝑋) ∈ ran 𝐼) |
16 | 6, 7, 12 | diaelrnN 37120 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑋) ∈ ran 𝐼) → ( ⊥ ‘𝑋) ⊆ ((LTrn‘𝐾)‘𝑊)) |
17 | 15, 16 | syldan 587 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝑆 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋)) → ( ⊥ ‘𝑋) ⊆ ((LTrn‘𝐾)‘𝑊)) |
18 | 6, 7, 12, 13 | docaclN 37199 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘𝑋) ⊆ ((LTrn‘𝐾)‘𝑊)) → ( ⊥ ‘( ⊥ ‘𝑋)) ∈ ran 𝐼) |
19 | 17, 18 | syldan 587 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝑆 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋)) → ( ⊥ ‘( ⊥ ‘𝑋)) ∈ ran 𝐼) |
20 | 1, 19 | eqeltrrd 2907 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝑆 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋)) → 𝑋 ∈ ran 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ⊆ wss 3798 ran crn 5343 ‘cfv 6123 Basecbs 16222 LSubSpclss 19288 HLchlt 35425 LHypclh 36059 LTrncltrn 36176 DVecAcdveca 37077 DIsoAcdia 37103 ocAcocaN 37194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 ax-riotaBAD 35028 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-iin 4743 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-undef 7664 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-oadd 7830 df-er 8009 df-map 8124 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-2 11414 df-3 11415 df-4 11416 df-5 11417 df-6 11418 df-n0 11619 df-z 11705 df-uz 11969 df-fz 12620 df-struct 16224 df-ndx 16225 df-slot 16226 df-base 16228 df-plusg 16318 df-sca 16321 df-vsca 16322 df-proset 17281 df-poset 17299 df-plt 17311 df-lub 17327 df-glb 17328 df-join 17329 df-meet 17330 df-p0 17392 df-p1 17393 df-lat 17399 df-clat 17461 df-lss 19289 df-oposet 35251 df-ol 35253 df-oml 35254 df-covers 35341 df-ats 35342 df-atl 35373 df-cvlat 35397 df-hlat 35426 df-llines 35573 df-lplanes 35574 df-lvols 35575 df-lines 35576 df-psubsp 35578 df-pmap 35579 df-padd 35871 df-lhyp 36063 df-laut 36064 df-ldil 36179 df-ltrn 36180 df-trl 36234 df-dveca 37078 df-disoa 37104 df-docaN 37195 |
This theorem is referenced by: diarnN 37204 |
Copyright terms: Public domain | W3C validator |