![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domen2 | Structured version Visualization version GIF version |
Description: Equality-like theorem for equinumerosity and dominance. (Contributed by NM, 8-Nov-2003.) |
Ref | Expression |
---|---|
domen2 | ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≼ 𝐴 ↔ 𝐶 ≼ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domentr 8300 | . . 3 ⊢ ((𝐶 ≼ 𝐴 ∧ 𝐴 ≈ 𝐵) → 𝐶 ≼ 𝐵) | |
2 | 1 | ancoms 452 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≼ 𝐴) → 𝐶 ≼ 𝐵) |
3 | ensym 8290 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
4 | domentr 8300 | . . . 4 ⊢ ((𝐶 ≼ 𝐵 ∧ 𝐵 ≈ 𝐴) → 𝐶 ≼ 𝐴) | |
5 | 4 | ancoms 452 | . . 3 ⊢ ((𝐵 ≈ 𝐴 ∧ 𝐶 ≼ 𝐵) → 𝐶 ≼ 𝐴) |
6 | 3, 5 | sylan 575 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≼ 𝐵) → 𝐶 ≼ 𝐴) |
7 | 2, 6 | impbida 791 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≼ 𝐴 ↔ 𝐶 ≼ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 class class class wbr 4886 ≈ cen 8238 ≼ cdom 8239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-er 8026 df-en 8242 df-dom 8243 |
This theorem is referenced by: infdiffi 8852 carddomi2 9129 numdom 9194 cdadom2 9344 infdif 9366 fin45 9549 fin67 9552 aleph1 9728 gchdomtri 9786 gchpwdom 9827 gchhar 9836 ctbnfien 38342 |
Copyright terms: Public domain | W3C validator |