Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > domen2 | Structured version Visualization version GIF version |
Description: Equality-like theorem for equinumerosity and dominance. (Contributed by NM, 8-Nov-2003.) |
Ref | Expression |
---|---|
domen2 | ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≼ 𝐴 ↔ 𝐶 ≼ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domentr 8607 | . . 3 ⊢ ((𝐶 ≼ 𝐴 ∧ 𝐴 ≈ 𝐵) → 𝐶 ≼ 𝐵) | |
2 | 1 | ancoms 462 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≼ 𝐴) → 𝐶 ≼ 𝐵) |
3 | ensym 8597 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
4 | domentr 8607 | . . . 4 ⊢ ((𝐶 ≼ 𝐵 ∧ 𝐵 ≈ 𝐴) → 𝐶 ≼ 𝐴) | |
5 | 4 | ancoms 462 | . . 3 ⊢ ((𝐵 ≈ 𝐴 ∧ 𝐶 ≼ 𝐵) → 𝐶 ≼ 𝐴) |
6 | 3, 5 | sylan 583 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≼ 𝐵) → 𝐶 ≼ 𝐴) |
7 | 2, 6 | impbida 801 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≼ 𝐴 ↔ 𝐶 ≼ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 class class class wbr 5027 ≈ cen 8545 ≼ cdom 8546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3399 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-br 5028 df-opab 5090 df-id 5425 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-er 8313 df-en 8549 df-dom 8550 |
This theorem is referenced by: infdiffi 9187 carddomi2 9465 numdom 9531 djudom2 9676 infdif 9702 fin45 9885 fin67 9888 aleph1 10064 gchdomtri 10122 gchpwdom 10163 gchhar 10172 ctbnfien 40196 |
Copyright terms: Public domain | W3C validator |