| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domen2 | Structured version Visualization version GIF version | ||
| Description: Equality-like theorem for equinumerosity and dominance. (Contributed by NM, 8-Nov-2003.) |
| Ref | Expression |
|---|---|
| domen2 | ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≼ 𝐴 ↔ 𝐶 ≼ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domentr 8946 | . . 3 ⊢ ((𝐶 ≼ 𝐴 ∧ 𝐴 ≈ 𝐵) → 𝐶 ≼ 𝐵) | |
| 2 | 1 | ancoms 458 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≼ 𝐴) → 𝐶 ≼ 𝐵) |
| 3 | ensym 8936 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 4 | domentr 8946 | . . . 4 ⊢ ((𝐶 ≼ 𝐵 ∧ 𝐵 ≈ 𝐴) → 𝐶 ≼ 𝐴) | |
| 5 | 4 | ancoms 458 | . . 3 ⊢ ((𝐵 ≈ 𝐴 ∧ 𝐶 ≼ 𝐵) → 𝐶 ≼ 𝐴) |
| 6 | 3, 5 | sylan 580 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≼ 𝐵) → 𝐶 ≼ 𝐴) |
| 7 | 2, 6 | impbida 800 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐶 ≼ 𝐴 ↔ 𝐶 ≼ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 class class class wbr 5095 ≈ cen 8876 ≼ cdom 8877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-er 8631 df-en 8880 df-dom 8881 |
| This theorem is referenced by: infdiffi 9559 carddomi2 9874 numdom 9940 djudom2 10086 infdif 10110 fin45 10294 fin67 10297 aleph1 10473 gchdomtri 10531 gchpwdom 10572 gchhar 10581 ctbnfien 42975 |
| Copyright terms: Public domain | W3C validator |