MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djudom2 Structured version   Visualization version   GIF version

Theorem djudom2 10175
Description: Ordering law for cardinal addition. Theorem 6L(a) of [Enderton] p. 149. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djudom2 ((𝐴𝐵𝐶𝑉) → (𝐶𝐴) ≼ (𝐶𝐵))

Proof of Theorem djudom2
StepHypRef Expression
1 djudom1 10174 . 2 ((𝐴𝐵𝐶𝑉) → (𝐴𝐶) ≼ (𝐵𝐶))
2 reldom 8942 . . . . 5 Rel ≼
32brrelex1i 5723 . . . 4 (𝐴𝐵𝐴 ∈ V)
4 djucomen 10169 . . . 4 ((𝐴 ∈ V ∧ 𝐶𝑉) → (𝐴𝐶) ≈ (𝐶𝐴))
53, 4sylan 579 . . 3 ((𝐴𝐵𝐶𝑉) → (𝐴𝐶) ≈ (𝐶𝐴))
62brrelex2i 5724 . . . 4 (𝐴𝐵𝐵 ∈ V)
7 djucomen 10169 . . . 4 ((𝐵 ∈ V ∧ 𝐶𝑉) → (𝐵𝐶) ≈ (𝐶𝐵))
86, 7sylan 579 . . 3 ((𝐴𝐵𝐶𝑉) → (𝐵𝐶) ≈ (𝐶𝐵))
9 domen1 9116 . . . 4 ((𝐴𝐶) ≈ (𝐶𝐴) → ((𝐴𝐶) ≼ (𝐵𝐶) ↔ (𝐶𝐴) ≼ (𝐵𝐶)))
10 domen2 9117 . . . 4 ((𝐵𝐶) ≈ (𝐶𝐵) → ((𝐶𝐴) ≼ (𝐵𝐶) ↔ (𝐶𝐴) ≼ (𝐶𝐵)))
119, 10sylan9bb 509 . . 3 (((𝐴𝐶) ≈ (𝐶𝐴) ∧ (𝐵𝐶) ≈ (𝐶𝐵)) → ((𝐴𝐶) ≼ (𝐵𝐶) ↔ (𝐶𝐴) ≼ (𝐶𝐵)))
125, 8, 11syl2anc 583 . 2 ((𝐴𝐵𝐶𝑉) → ((𝐴𝐶) ≼ (𝐵𝐶) ↔ (𝐶𝐴) ≼ (𝐶𝐵)))
131, 12mpbid 231 1 ((𝐴𝐵𝐶𝑉) → (𝐶𝐴) ≼ (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2098  Vcvv 3466   class class class wbr 5139  cen 8933  cdom 8934  cdju 9890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ord 6358  df-on 6359  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-1st 7969  df-2nd 7970  df-1o 8462  df-er 8700  df-en 8937  df-dom 8938  df-dju 9893
This theorem is referenced by:  djulepw  10184  unctb  10197  infdjuabs  10198  infdju  10200  infdif  10201  fin45  10384  canthp1  10646  pwdjundom  10659  gchdjuidm  10660  gchpwdom  10662  gchhar  10671  pr2dom  42792  tr3dom  42793
  Copyright terms: Public domain W3C validator