MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djudom2 Structured version   Visualization version   GIF version

Theorem djudom2 10201
Description: Ordering law for cardinal addition. Theorem 6L(a) of [Enderton] p. 149. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djudom2 ((𝐴𝐵𝐶𝑉) → (𝐶𝐴) ≼ (𝐶𝐵))

Proof of Theorem djudom2
StepHypRef Expression
1 djudom1 10200 . 2 ((𝐴𝐵𝐶𝑉) → (𝐴𝐶) ≼ (𝐵𝐶))
2 reldom 8964 . . . . 5 Rel ≼
32brrelex1i 5729 . . . 4 (𝐴𝐵𝐴 ∈ V)
4 djucomen 10195 . . . 4 ((𝐴 ∈ V ∧ 𝐶𝑉) → (𝐴𝐶) ≈ (𝐶𝐴))
53, 4sylan 579 . . 3 ((𝐴𝐵𝐶𝑉) → (𝐴𝐶) ≈ (𝐶𝐴))
62brrelex2i 5730 . . . 4 (𝐴𝐵𝐵 ∈ V)
7 djucomen 10195 . . . 4 ((𝐵 ∈ V ∧ 𝐶𝑉) → (𝐵𝐶) ≈ (𝐶𝐵))
86, 7sylan 579 . . 3 ((𝐴𝐵𝐶𝑉) → (𝐵𝐶) ≈ (𝐶𝐵))
9 domen1 9138 . . . 4 ((𝐴𝐶) ≈ (𝐶𝐴) → ((𝐴𝐶) ≼ (𝐵𝐶) ↔ (𝐶𝐴) ≼ (𝐵𝐶)))
10 domen2 9139 . . . 4 ((𝐵𝐶) ≈ (𝐶𝐵) → ((𝐶𝐴) ≼ (𝐵𝐶) ↔ (𝐶𝐴) ≼ (𝐶𝐵)))
119, 10sylan9bb 509 . . 3 (((𝐴𝐶) ≈ (𝐶𝐴) ∧ (𝐵𝐶) ≈ (𝐶𝐵)) → ((𝐴𝐶) ≼ (𝐵𝐶) ↔ (𝐶𝐴) ≼ (𝐶𝐵)))
125, 8, 11syl2anc 583 . 2 ((𝐴𝐵𝐶𝑉) → ((𝐴𝐶) ≼ (𝐵𝐶) ↔ (𝐶𝐴) ≼ (𝐶𝐵)))
131, 12mpbid 231 1 ((𝐴𝐵𝐶𝑉) → (𝐶𝐴) ≼ (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2099  Vcvv 3470   class class class wbr 5143  cen 8955  cdom 8956  cdju 9916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-1st 7988  df-2nd 7989  df-1o 8481  df-er 8719  df-en 8959  df-dom 8960  df-dju 9919
This theorem is referenced by:  djulepw  10210  unctb  10223  infdjuabs  10224  infdju  10226  infdif  10227  fin45  10410  canthp1  10672  pwdjundom  10685  gchdjuidm  10686  gchpwdom  10688  gchhar  10697  pr2dom  42948  tr3dom  42949
  Copyright terms: Public domain W3C validator