Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > djudom2 | Structured version Visualization version GIF version |
Description: Ordering law for cardinal addition. Theorem 6L(a) of [Enderton] p. 149. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
djudom2 | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐶 ⊔ 𝐴) ≼ (𝐶 ⊔ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djudom1 9938 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶)) | |
2 | reldom 8739 | . . . . 5 ⊢ Rel ≼ | |
3 | 2 | brrelex1i 5643 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
4 | djucomen 9933 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ 𝑉) → (𝐴 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐴)) | |
5 | 3, 4 | sylan 580 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐴 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐴)) |
6 | 2 | brrelex2i 5644 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐵 ∈ V) |
7 | djucomen 9933 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ 𝑉) → (𝐵 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐵)) | |
8 | 6, 7 | sylan 580 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐵 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐵)) |
9 | domen1 8906 | . . . 4 ⊢ ((𝐴 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐴) → ((𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶) ↔ (𝐶 ⊔ 𝐴) ≼ (𝐵 ⊔ 𝐶))) | |
10 | domen2 8907 | . . . 4 ⊢ ((𝐵 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐵) → ((𝐶 ⊔ 𝐴) ≼ (𝐵 ⊔ 𝐶) ↔ (𝐶 ⊔ 𝐴) ≼ (𝐶 ⊔ 𝐵))) | |
11 | 9, 10 | sylan9bb 510 | . . 3 ⊢ (((𝐴 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐴) ∧ (𝐵 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐵)) → ((𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶) ↔ (𝐶 ⊔ 𝐴) ≼ (𝐶 ⊔ 𝐵))) |
12 | 5, 8, 11 | syl2anc 584 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → ((𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶) ↔ (𝐶 ⊔ 𝐴) ≼ (𝐶 ⊔ 𝐵))) |
13 | 1, 12 | mpbid 231 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐶 ⊔ 𝐴) ≼ (𝐶 ⊔ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 Vcvv 3432 class class class wbr 5074 ≈ cen 8730 ≼ cdom 8731 ⊔ cdju 9656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-1st 7831 df-2nd 7832 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-dju 9659 |
This theorem is referenced by: djulepw 9948 unctb 9961 infdjuabs 9962 infdju 9964 infdif 9965 fin45 10148 canthp1 10410 pwdjundom 10423 gchdjuidm 10424 gchpwdom 10426 gchhar 10435 pr2dom 41134 tr3dom 41135 |
Copyright terms: Public domain | W3C validator |