| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > djudom2 | Structured version Visualization version GIF version | ||
| Description: Ordering law for cardinal addition. Theorem 6L(a) of [Enderton] p. 149. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| djudom2 | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐶 ⊔ 𝐴) ≼ (𝐶 ⊔ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djudom1 10112 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶)) | |
| 2 | reldom 8901 | . . . . 5 ⊢ Rel ≼ | |
| 3 | 2 | brrelex1i 5687 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
| 4 | djucomen 10107 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ 𝑉) → (𝐴 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐴)) | |
| 5 | 3, 4 | sylan 580 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐴 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐴)) |
| 6 | 2 | brrelex2i 5688 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐵 ∈ V) |
| 7 | djucomen 10107 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ 𝑉) → (𝐵 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐵)) | |
| 8 | 6, 7 | sylan 580 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐵 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐵)) |
| 9 | domen1 9060 | . . . 4 ⊢ ((𝐴 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐴) → ((𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶) ↔ (𝐶 ⊔ 𝐴) ≼ (𝐵 ⊔ 𝐶))) | |
| 10 | domen2 9061 | . . . 4 ⊢ ((𝐵 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐵) → ((𝐶 ⊔ 𝐴) ≼ (𝐵 ⊔ 𝐶) ↔ (𝐶 ⊔ 𝐴) ≼ (𝐶 ⊔ 𝐵))) | |
| 11 | 9, 10 | sylan9bb 509 | . . 3 ⊢ (((𝐴 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐴) ∧ (𝐵 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐵)) → ((𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶) ↔ (𝐶 ⊔ 𝐴) ≼ (𝐶 ⊔ 𝐵))) |
| 12 | 5, 8, 11 | syl2anc 584 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → ((𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶) ↔ (𝐶 ⊔ 𝐴) ≼ (𝐶 ⊔ 𝐵))) |
| 13 | 1, 12 | mpbid 232 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐶 ⊔ 𝐴) ≼ (𝐶 ⊔ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3444 class class class wbr 5102 ≈ cen 8892 ≼ cdom 8893 ⊔ cdju 9827 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-1st 7947 df-2nd 7948 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-dju 9830 |
| This theorem is referenced by: djulepw 10122 unctb 10133 infdjuabs 10134 infdju 10136 infdif 10137 fin45 10321 canthp1 10583 pwdjundom 10596 gchdjuidm 10597 gchpwdom 10599 gchhar 10608 pr2dom 43489 tr3dom 43490 |
| Copyright terms: Public domain | W3C validator |