MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djudom2 Structured version   Visualization version   GIF version

Theorem djudom2 9643
Description: Ordering law for cardinal addition. Theorem 6L(a) of [Enderton] p. 149. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djudom2 ((𝐴𝐵𝐶𝑉) → (𝐶𝐴) ≼ (𝐶𝐵))

Proof of Theorem djudom2
StepHypRef Expression
1 djudom1 9642 . 2 ((𝐴𝐵𝐶𝑉) → (𝐴𝐶) ≼ (𝐵𝐶))
2 reldom 8533 . . . . 5 Rel ≼
32brrelex1i 5577 . . . 4 (𝐴𝐵𝐴 ∈ V)
4 djucomen 9637 . . . 4 ((𝐴 ∈ V ∧ 𝐶𝑉) → (𝐴𝐶) ≈ (𝐶𝐴))
53, 4sylan 583 . . 3 ((𝐴𝐵𝐶𝑉) → (𝐴𝐶) ≈ (𝐶𝐴))
62brrelex2i 5578 . . . 4 (𝐴𝐵𝐵 ∈ V)
7 djucomen 9637 . . . 4 ((𝐵 ∈ V ∧ 𝐶𝑉) → (𝐵𝐶) ≈ (𝐶𝐵))
86, 7sylan 583 . . 3 ((𝐴𝐵𝐶𝑉) → (𝐵𝐶) ≈ (𝐶𝐵))
9 domen1 8681 . . . 4 ((𝐴𝐶) ≈ (𝐶𝐴) → ((𝐴𝐶) ≼ (𝐵𝐶) ↔ (𝐶𝐴) ≼ (𝐵𝐶)))
10 domen2 8682 . . . 4 ((𝐵𝐶) ≈ (𝐶𝐵) → ((𝐶𝐴) ≼ (𝐵𝐶) ↔ (𝐶𝐴) ≼ (𝐶𝐵)))
119, 10sylan9bb 513 . . 3 (((𝐴𝐶) ≈ (𝐶𝐴) ∧ (𝐵𝐶) ≈ (𝐶𝐵)) → ((𝐴𝐶) ≼ (𝐵𝐶) ↔ (𝐶𝐴) ≼ (𝐶𝐵)))
125, 8, 11syl2anc 587 . 2 ((𝐴𝐵𝐶𝑉) → ((𝐴𝐶) ≼ (𝐵𝐶) ↔ (𝐶𝐴) ≼ (𝐶𝐵)))
131, 12mpbid 235 1 ((𝐴𝐵𝐶𝑉) → (𝐶𝐴) ≼ (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2111  Vcvv 3409   class class class wbr 5032  cen 8524  cdom 8525  cdju 9360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-ord 6172  df-on 6173  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-1st 7693  df-2nd 7694  df-1o 8112  df-er 8299  df-en 8528  df-dom 8529  df-dju 9363
This theorem is referenced by:  djulepw  9652  unctb  9665  infdjuabs  9666  infdju  9668  infdif  9669  fin45  9852  canthp1  10114  pwdjundom  10127  gchdjuidm  10128  gchpwdom  10130  gchhar  10139  pr2dom  40608  tr3dom  40609
  Copyright terms: Public domain W3C validator