| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > djudom2 | Structured version Visualization version GIF version | ||
| Description: Ordering law for cardinal addition. Theorem 6L(a) of [Enderton] p. 149. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| djudom2 | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐶 ⊔ 𝐴) ≼ (𝐶 ⊔ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djudom1 10085 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶)) | |
| 2 | reldom 8885 | . . . . 5 ⊢ Rel ≼ | |
| 3 | 2 | brrelex1i 5677 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
| 4 | djucomen 10080 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ 𝑉) → (𝐴 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐴)) | |
| 5 | 3, 4 | sylan 580 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐴 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐴)) |
| 6 | 2 | brrelex2i 5678 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐵 ∈ V) |
| 7 | djucomen 10080 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ 𝑉) → (𝐵 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐵)) | |
| 8 | 6, 7 | sylan 580 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐵 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐵)) |
| 9 | domen1 9043 | . . . 4 ⊢ ((𝐴 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐴) → ((𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶) ↔ (𝐶 ⊔ 𝐴) ≼ (𝐵 ⊔ 𝐶))) | |
| 10 | domen2 9044 | . . . 4 ⊢ ((𝐵 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐵) → ((𝐶 ⊔ 𝐴) ≼ (𝐵 ⊔ 𝐶) ↔ (𝐶 ⊔ 𝐴) ≼ (𝐶 ⊔ 𝐵))) | |
| 11 | 9, 10 | sylan9bb 509 | . . 3 ⊢ (((𝐴 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐴) ∧ (𝐵 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐵)) → ((𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶) ↔ (𝐶 ⊔ 𝐴) ≼ (𝐶 ⊔ 𝐵))) |
| 12 | 5, 8, 11 | syl2anc 584 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → ((𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶) ↔ (𝐶 ⊔ 𝐴) ≼ (𝐶 ⊔ 𝐵))) |
| 13 | 1, 12 | mpbid 232 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐶 ⊔ 𝐴) ≼ (𝐶 ⊔ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 Vcvv 3437 class class class wbr 5095 ≈ cen 8876 ≼ cdom 8877 ⊔ cdju 9802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6317 df-on 6318 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-1st 7930 df-2nd 7931 df-1o 8394 df-er 8631 df-en 8880 df-dom 8881 df-dju 9805 |
| This theorem is referenced by: djulepw 10095 unctb 10106 infdjuabs 10107 infdju 10109 infdif 10110 fin45 10294 canthp1 10556 pwdjundom 10569 gchdjuidm 10570 gchpwdom 10572 gchhar 10581 pr2dom 43684 tr3dom 43685 |
| Copyright terms: Public domain | W3C validator |