![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > djudom2 | Structured version Visualization version GIF version |
Description: Ordering law for cardinal addition. Theorem 6L(a) of [Enderton] p. 149. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
djudom2 | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐶 ⊔ 𝐴) ≼ (𝐶 ⊔ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djudom1 10176 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶)) | |
2 | reldom 8944 | . . . . 5 ⊢ Rel ≼ | |
3 | 2 | brrelex1i 5732 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
4 | djucomen 10171 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ 𝑉) → (𝐴 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐴)) | |
5 | 3, 4 | sylan 580 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐴 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐴)) |
6 | 2 | brrelex2i 5733 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐵 ∈ V) |
7 | djucomen 10171 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ 𝑉) → (𝐵 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐵)) | |
8 | 6, 7 | sylan 580 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐵 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐵)) |
9 | domen1 9118 | . . . 4 ⊢ ((𝐴 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐴) → ((𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶) ↔ (𝐶 ⊔ 𝐴) ≼ (𝐵 ⊔ 𝐶))) | |
10 | domen2 9119 | . . . 4 ⊢ ((𝐵 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐵) → ((𝐶 ⊔ 𝐴) ≼ (𝐵 ⊔ 𝐶) ↔ (𝐶 ⊔ 𝐴) ≼ (𝐶 ⊔ 𝐵))) | |
11 | 9, 10 | sylan9bb 510 | . . 3 ⊢ (((𝐴 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐴) ∧ (𝐵 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐵)) → ((𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶) ↔ (𝐶 ⊔ 𝐴) ≼ (𝐶 ⊔ 𝐵))) |
12 | 5, 8, 11 | syl2anc 584 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → ((𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶) ↔ (𝐶 ⊔ 𝐴) ≼ (𝐶 ⊔ 𝐵))) |
13 | 1, 12 | mpbid 231 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐶 ⊔ 𝐴) ≼ (𝐶 ⊔ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 Vcvv 3474 class class class wbr 5148 ≈ cen 8935 ≼ cdom 8936 ⊔ cdju 9892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-1st 7974 df-2nd 7975 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-dju 9895 |
This theorem is referenced by: djulepw 10186 unctb 10199 infdjuabs 10200 infdju 10202 infdif 10203 fin45 10386 canthp1 10648 pwdjundom 10661 gchdjuidm 10662 gchpwdom 10664 gchhar 10673 pr2dom 42268 tr3dom 42269 |
Copyright terms: Public domain | W3C validator |