![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > djudom2 | Structured version Visualization version GIF version |
Description: Ordering law for cardinal addition. Theorem 6L(a) of [Enderton] p. 149. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
djudom2 | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐶 ⊔ 𝐴) ≼ (𝐶 ⊔ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djudom1 10174 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶)) | |
2 | reldom 8942 | . . . . 5 ⊢ Rel ≼ | |
3 | 2 | brrelex1i 5723 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
4 | djucomen 10169 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ 𝑉) → (𝐴 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐴)) | |
5 | 3, 4 | sylan 579 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐴 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐴)) |
6 | 2 | brrelex2i 5724 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → 𝐵 ∈ V) |
7 | djucomen 10169 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ 𝑉) → (𝐵 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐵)) | |
8 | 6, 7 | sylan 579 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐵 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐵)) |
9 | domen1 9116 | . . . 4 ⊢ ((𝐴 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐴) → ((𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶) ↔ (𝐶 ⊔ 𝐴) ≼ (𝐵 ⊔ 𝐶))) | |
10 | domen2 9117 | . . . 4 ⊢ ((𝐵 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐵) → ((𝐶 ⊔ 𝐴) ≼ (𝐵 ⊔ 𝐶) ↔ (𝐶 ⊔ 𝐴) ≼ (𝐶 ⊔ 𝐵))) | |
11 | 9, 10 | sylan9bb 509 | . . 3 ⊢ (((𝐴 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐴) ∧ (𝐵 ⊔ 𝐶) ≈ (𝐶 ⊔ 𝐵)) → ((𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶) ↔ (𝐶 ⊔ 𝐴) ≼ (𝐶 ⊔ 𝐵))) |
12 | 5, 8, 11 | syl2anc 583 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → ((𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶) ↔ (𝐶 ⊔ 𝐴) ≼ (𝐶 ⊔ 𝐵))) |
13 | 1, 12 | mpbid 231 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐶 ⊔ 𝐴) ≼ (𝐶 ⊔ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2098 Vcvv 3466 class class class wbr 5139 ≈ cen 8933 ≼ cdom 8934 ⊔ cdju 9890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-ord 6358 df-on 6359 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-1st 7969 df-2nd 7970 df-1o 8462 df-er 8700 df-en 8937 df-dom 8938 df-dju 9893 |
This theorem is referenced by: djulepw 10184 unctb 10197 infdjuabs 10198 infdju 10200 infdif 10201 fin45 10384 canthp1 10646 pwdjundom 10659 gchdjuidm 10660 gchpwdom 10662 gchhar 10671 pr2dom 42792 tr3dom 42793 |
Copyright terms: Public domain | W3C validator |