MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djudom2 Structured version   Visualization version   GIF version

Theorem djudom2 10253
Description: Ordering law for cardinal addition. Theorem 6L(a) of [Enderton] p. 149. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djudom2 ((𝐴𝐵𝐶𝑉) → (𝐶𝐴) ≼ (𝐶𝐵))

Proof of Theorem djudom2
StepHypRef Expression
1 djudom1 10252 . 2 ((𝐴𝐵𝐶𝑉) → (𝐴𝐶) ≼ (𝐵𝐶))
2 reldom 9009 . . . . 5 Rel ≼
32brrelex1i 5756 . . . 4 (𝐴𝐵𝐴 ∈ V)
4 djucomen 10247 . . . 4 ((𝐴 ∈ V ∧ 𝐶𝑉) → (𝐴𝐶) ≈ (𝐶𝐴))
53, 4sylan 579 . . 3 ((𝐴𝐵𝐶𝑉) → (𝐴𝐶) ≈ (𝐶𝐴))
62brrelex2i 5757 . . . 4 (𝐴𝐵𝐵 ∈ V)
7 djucomen 10247 . . . 4 ((𝐵 ∈ V ∧ 𝐶𝑉) → (𝐵𝐶) ≈ (𝐶𝐵))
86, 7sylan 579 . . 3 ((𝐴𝐵𝐶𝑉) → (𝐵𝐶) ≈ (𝐶𝐵))
9 domen1 9185 . . . 4 ((𝐴𝐶) ≈ (𝐶𝐴) → ((𝐴𝐶) ≼ (𝐵𝐶) ↔ (𝐶𝐴) ≼ (𝐵𝐶)))
10 domen2 9186 . . . 4 ((𝐵𝐶) ≈ (𝐶𝐵) → ((𝐶𝐴) ≼ (𝐵𝐶) ↔ (𝐶𝐴) ≼ (𝐶𝐵)))
119, 10sylan9bb 509 . . 3 (((𝐴𝐶) ≈ (𝐶𝐴) ∧ (𝐵𝐶) ≈ (𝐶𝐵)) → ((𝐴𝐶) ≼ (𝐵𝐶) ↔ (𝐶𝐴) ≼ (𝐶𝐵)))
125, 8, 11syl2anc 583 . 2 ((𝐴𝐵𝐶𝑉) → ((𝐴𝐶) ≼ (𝐵𝐶) ↔ (𝐶𝐴) ≼ (𝐶𝐵)))
131, 12mpbid 232 1 ((𝐴𝐵𝐶𝑉) → (𝐶𝐴) ≼ (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  Vcvv 3488   class class class wbr 5166  cen 9000  cdom 9001  cdju 9967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-1st 8030  df-2nd 8031  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-dju 9970
This theorem is referenced by:  djulepw  10262  unctb  10273  infdjuabs  10274  infdju  10276  infdif  10277  fin45  10461  canthp1  10723  pwdjundom  10736  gchdjuidm  10737  gchpwdom  10739  gchhar  10748  pr2dom  43489  tr3dom  43490
  Copyright terms: Public domain W3C validator