![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cndprob01 | Structured version Visualization version GIF version |
Description: The conditional probability has values in [0, 1]. (Contributed by Thierry Arnoux, 13-Dec-2016.) (Revised by Thierry Arnoux, 21-Jan-2017.) |
Ref | Expression |
---|---|
cndprob01 | β’ (((π β Prob β§ π΄ β dom π β§ π΅ β dom π) β§ (πβπ΅) β 0) β ((cprobβπ)ββ¨π΄, π΅β©) β (0[,]1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cndprobval 33073 | . . 3 β’ ((π β Prob β§ π΄ β dom π β§ π΅ β dom π) β ((cprobβπ)ββ¨π΄, π΅β©) = ((πβ(π΄ β© π΅)) / (πβπ΅))) | |
2 | 1 | adantr 482 | . 2 β’ (((π β Prob β§ π΄ β dom π β§ π΅ β dom π) β§ (πβπ΅) β 0) β ((cprobβπ)ββ¨π΄, π΅β©) = ((πβ(π΄ β© π΅)) / (πβπ΅))) |
3 | simpl1 1192 | . . . . 5 β’ (((π β Prob β§ π΄ β dom π β§ π΅ β dom π) β§ (πβπ΅) β 0) β π β Prob) | |
4 | domprobmeas 33050 | . . . . 5 β’ (π β Prob β π β (measuresβdom π)) | |
5 | 3, 4 | syl 17 | . . . 4 β’ (((π β Prob β§ π΄ β dom π β§ π΅ β dom π) β§ (πβπ΅) β 0) β π β (measuresβdom π)) |
6 | domprobsiga 33051 | . . . . . 6 β’ (π β Prob β dom π β βͺ ran sigAlgebra) | |
7 | 3, 6 | syl 17 | . . . . 5 β’ (((π β Prob β§ π΄ β dom π β§ π΅ β dom π) β§ (πβπ΅) β 0) β dom π β βͺ ran sigAlgebra) |
8 | simpl2 1193 | . . . . 5 β’ (((π β Prob β§ π΄ β dom π β§ π΅ β dom π) β§ (πβπ΅) β 0) β π΄ β dom π) | |
9 | simpl3 1194 | . . . . 5 β’ (((π β Prob β§ π΄ β dom π β§ π΅ β dom π) β§ (πβπ΅) β 0) β π΅ β dom π) | |
10 | inelsiga 32774 | . . . . 5 β’ ((dom π β βͺ ran sigAlgebra β§ π΄ β dom π β§ π΅ β dom π) β (π΄ β© π΅) β dom π) | |
11 | 7, 8, 9, 10 | syl3anc 1372 | . . . 4 β’ (((π β Prob β§ π΄ β dom π β§ π΅ β dom π) β§ (πβπ΅) β 0) β (π΄ β© π΅) β dom π) |
12 | inss2 4194 | . . . . 5 β’ (π΄ β© π΅) β π΅ | |
13 | 12 | a1i 11 | . . . 4 β’ (((π β Prob β§ π΄ β dom π β§ π΅ β dom π) β§ (πβπ΅) β 0) β (π΄ β© π΅) β π΅) |
14 | 5, 11, 9, 13 | measssd 32854 | . . 3 β’ (((π β Prob β§ π΄ β dom π β§ π΅ β dom π) β§ (πβπ΅) β 0) β (πβ(π΄ β© π΅)) β€ (πβπ΅)) |
15 | prob01 33053 | . . . . 5 β’ ((π β Prob β§ (π΄ β© π΅) β dom π) β (πβ(π΄ β© π΅)) β (0[,]1)) | |
16 | 3, 11, 15 | syl2anc 585 | . . . 4 β’ (((π β Prob β§ π΄ β dom π β§ π΅ β dom π) β§ (πβπ΅) β 0) β (πβ(π΄ β© π΅)) β (0[,]1)) |
17 | prob01 33053 | . . . . 5 β’ ((π β Prob β§ π΅ β dom π) β (πβπ΅) β (0[,]1)) | |
18 | 3, 9, 17 | syl2anc 585 | . . . 4 β’ (((π β Prob β§ π΄ β dom π β§ π΅ β dom π) β§ (πβπ΅) β 0) β (πβπ΅) β (0[,]1)) |
19 | simpr 486 | . . . 4 β’ (((π β Prob β§ π΄ β dom π β§ π΅ β dom π) β§ (πβπ΅) β 0) β (πβπ΅) β 0) | |
20 | unitdivcld 32522 | . . . 4 β’ (((πβ(π΄ β© π΅)) β (0[,]1) β§ (πβπ΅) β (0[,]1) β§ (πβπ΅) β 0) β ((πβ(π΄ β© π΅)) β€ (πβπ΅) β ((πβ(π΄ β© π΅)) / (πβπ΅)) β (0[,]1))) | |
21 | 16, 18, 19, 20 | syl3anc 1372 | . . 3 β’ (((π β Prob β§ π΄ β dom π β§ π΅ β dom π) β§ (πβπ΅) β 0) β ((πβ(π΄ β© π΅)) β€ (πβπ΅) β ((πβ(π΄ β© π΅)) / (πβπ΅)) β (0[,]1))) |
22 | 14, 21 | mpbid 231 | . 2 β’ (((π β Prob β§ π΄ β dom π β§ π΅ β dom π) β§ (πβπ΅) β 0) β ((πβ(π΄ β© π΅)) / (πβπ΅)) β (0[,]1)) |
23 | 2, 22 | eqeltrd 2838 | 1 β’ (((π β Prob β§ π΄ β dom π β§ π΅ β dom π) β§ (πβπ΅) β 0) β ((cprobβπ)ββ¨π΄, π΅β©) β (0[,]1)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 β wne 2944 β© cin 3914 β wss 3915 β¨cop 4597 βͺ cuni 4870 class class class wbr 5110 dom cdm 5638 ran crn 5639 βcfv 6501 (class class class)co 7362 0cc0 11058 1c1 11059 β€ cle 11197 / cdiv 11819 [,]cicc 13274 sigAlgebracsiga 32747 measurescmeas 32834 Probcprb 33047 cprobccprob 33071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-inf2 9584 ax-ac2 10406 ax-cnex 11114 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 ax-pre-mulgt0 11135 ax-pre-sup 11136 ax-addf 11137 ax-mulf 11138 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3356 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4871 df-int 4913 df-iun 4961 df-iin 4962 df-disj 5076 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-se 5594 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-isom 6510 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-of 7622 df-om 7808 df-1st 7926 df-2nd 7927 df-supp 8098 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-1o 8417 df-2o 8418 df-er 8655 df-map 8774 df-pm 8775 df-ixp 8843 df-en 8891 df-dom 8892 df-sdom 8893 df-fin 8894 df-fsupp 9313 df-fi 9354 df-sup 9385 df-inf 9386 df-oi 9453 df-dju 9844 df-card 9882 df-acn 9885 df-ac 10059 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-sub 11394 df-neg 11395 df-div 11820 df-nn 12161 df-2 12223 df-3 12224 df-4 12225 df-5 12226 df-6 12227 df-7 12228 df-8 12229 df-9 12230 df-n0 12421 df-z 12507 df-dec 12626 df-uz 12771 df-q 12881 df-rp 12923 df-xneg 13040 df-xadd 13041 df-xmul 13042 df-ioo 13275 df-ioc 13276 df-ico 13277 df-icc 13278 df-fz 13432 df-fzo 13575 df-fl 13704 df-mod 13782 df-seq 13914 df-exp 13975 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14959 df-cj 14991 df-re 14992 df-im 14993 df-sqrt 15127 df-abs 15128 df-limsup 15360 df-clim 15377 df-rlim 15378 df-sum 15578 df-ef 15957 df-sin 15959 df-cos 15960 df-pi 15962 df-struct 17026 df-sets 17043 df-slot 17061 df-ndx 17073 df-base 17091 df-ress 17120 df-plusg 17153 df-mulr 17154 df-starv 17155 df-sca 17156 df-vsca 17157 df-ip 17158 df-tset 17159 df-ple 17160 df-ds 17162 df-unif 17163 df-hom 17164 df-cco 17165 df-rest 17311 df-topn 17312 df-0g 17330 df-gsum 17331 df-topgen 17332 df-pt 17333 df-prds 17336 df-ordt 17390 df-xrs 17391 df-qtop 17396 df-imas 17397 df-xps 17399 df-mre 17473 df-mrc 17474 df-acs 17476 df-ps 18462 df-tsr 18463 df-plusf 18503 df-mgm 18504 df-sgrp 18553 df-mnd 18564 df-mhm 18608 df-submnd 18609 df-grp 18758 df-minusg 18759 df-sbg 18760 df-mulg 18880 df-subg 18932 df-cntz 19104 df-cmn 19571 df-abl 19572 df-mgp 19904 df-ur 19921 df-ring 19973 df-cring 19974 df-subrg 20236 df-abv 20292 df-lmod 20340 df-scaf 20341 df-sra 20649 df-rgmod 20650 df-psmet 20804 df-xmet 20805 df-met 20806 df-bl 20807 df-mopn 20808 df-fbas 20809 df-fg 20810 df-cnfld 20813 df-top 22259 df-topon 22276 df-topsp 22298 df-bases 22312 df-cld 22386 df-ntr 22387 df-cls 22388 df-nei 22465 df-lp 22503 df-perf 22504 df-cn 22594 df-cnp 22595 df-haus 22682 df-tx 22929 df-hmeo 23122 df-fil 23213 df-fm 23305 df-flim 23306 df-flf 23307 df-tmd 23439 df-tgp 23440 df-tsms 23494 df-trg 23527 df-xms 23689 df-ms 23690 df-tms 23691 df-nm 23954 df-ngp 23955 df-nrg 23957 df-nlm 23958 df-ii 24256 df-cncf 24257 df-limc 25246 df-dv 25247 df-log 25928 df-esum 32667 df-siga 32748 df-meas 32835 df-prob 33048 df-cndprob 33072 |
This theorem is referenced by: bayesth 33079 |
Copyright terms: Public domain | W3C validator |