Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dstfrvinc | Structured version Visualization version GIF version |
Description: A cumulative distribution function is nondecreasing. (Contributed by Thierry Arnoux, 11-Feb-2017.) |
Ref | Expression |
---|---|
dstfrv.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
dstfrv.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
dstfrv.3 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℝ ↦ (𝑃‘(𝑋∘RV/𝑐 ≤ 𝑥)))) |
dstfrvinc.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dstfrvinc.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
dstfrvinc.3 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Ref | Expression |
---|---|
dstfrvinc | ⊢ (𝜑 → (𝐹‘𝐴) ≤ (𝐹‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dstfrv.1 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
2 | domprobmeas 31947 | . . . 4 ⊢ (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝑃 ∈ (measures‘dom 𝑃)) |
4 | dstfrv.2 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
5 | dstfrvinc.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
6 | 1, 4, 5 | orvclteel 32009 | . . 3 ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐴) ∈ dom 𝑃) |
7 | dstfrvinc.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
8 | 1, 4, 7 | orvclteel 32009 | . . 3 ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐵) ∈ dom 𝑃) |
9 | dstfrvinc.3 | . . . 4 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
10 | 1, 4, 5, 7, 9 | orvclteinc 32012 | . . 3 ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐴) ⊆ (𝑋∘RV/𝑐 ≤ 𝐵)) |
11 | 3, 6, 8, 10 | measssd 31753 | . 2 ⊢ (𝜑 → (𝑃‘(𝑋∘RV/𝑐 ≤ 𝐴)) ≤ (𝑃‘(𝑋∘RV/𝑐 ≤ 𝐵))) |
12 | dstfrv.3 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℝ ↦ (𝑃‘(𝑋∘RV/𝑐 ≤ 𝑥)))) | |
13 | simpr 488 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴) | |
14 | 13 | oveq2d 7186 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝑋∘RV/𝑐 ≤ 𝑥) = (𝑋∘RV/𝑐 ≤ 𝐴)) |
15 | 14 | fveq2d 6678 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝑃‘(𝑋∘RV/𝑐 ≤ 𝑥)) = (𝑃‘(𝑋∘RV/𝑐 ≤ 𝐴))) |
16 | 1, 6 | probvalrnd 31961 | . . 3 ⊢ (𝜑 → (𝑃‘(𝑋∘RV/𝑐 ≤ 𝐴)) ∈ ℝ) |
17 | 12, 15, 5, 16 | fvmptd 6782 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) = (𝑃‘(𝑋∘RV/𝑐 ≤ 𝐴))) |
18 | simpr 488 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) | |
19 | 18 | oveq2d 7186 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝑋∘RV/𝑐 ≤ 𝑥) = (𝑋∘RV/𝑐 ≤ 𝐵)) |
20 | 19 | fveq2d 6678 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝑃‘(𝑋∘RV/𝑐 ≤ 𝑥)) = (𝑃‘(𝑋∘RV/𝑐 ≤ 𝐵))) |
21 | 1, 8 | probvalrnd 31961 | . . 3 ⊢ (𝜑 → (𝑃‘(𝑋∘RV/𝑐 ≤ 𝐵)) ∈ ℝ) |
22 | 12, 20, 7, 21 | fvmptd 6782 | . 2 ⊢ (𝜑 → (𝐹‘𝐵) = (𝑃‘(𝑋∘RV/𝑐 ≤ 𝐵))) |
23 | 11, 17, 22 | 3brtr4d 5062 | 1 ⊢ (𝜑 → (𝐹‘𝐴) ≤ (𝐹‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 class class class wbr 5030 ↦ cmpt 5110 dom cdm 5525 ‘cfv 6339 (class class class)co 7170 ℝcr 10614 ≤ cle 10754 measurescmeas 31733 Probcprb 31944 rRndVarcrrv 31977 ∘RV/𝑐corvc 31992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-inf2 9177 ax-ac2 9963 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 ax-addf 10694 ax-mulf 10695 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-iin 4884 df-disj 4996 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-se 5484 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-of 7425 df-om 7600 df-1st 7714 df-2nd 7715 df-supp 7857 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-2o 8132 df-er 8320 df-map 8439 df-pm 8440 df-ixp 8508 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-fsupp 8907 df-fi 8948 df-sup 8979 df-inf 8980 df-oi 9047 df-dju 9403 df-card 9441 df-acn 9444 df-ac 9616 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-5 11782 df-6 11783 df-7 11784 df-8 11785 df-9 11786 df-n0 11977 df-z 12063 df-dec 12180 df-uz 12325 df-q 12431 df-rp 12473 df-xneg 12590 df-xadd 12591 df-xmul 12592 df-ioo 12825 df-ioc 12826 df-ico 12827 df-icc 12828 df-fz 12982 df-fzo 13125 df-fl 13253 df-mod 13329 df-seq 13461 df-exp 13522 df-fac 13726 df-bc 13755 df-hash 13783 df-shft 14516 df-cj 14548 df-re 14549 df-im 14550 df-sqrt 14684 df-abs 14685 df-limsup 14918 df-clim 14935 df-rlim 14936 df-sum 15136 df-ef 15513 df-sin 15515 df-cos 15516 df-pi 15518 df-struct 16588 df-ndx 16589 df-slot 16590 df-base 16592 df-sets 16593 df-ress 16594 df-plusg 16681 df-mulr 16682 df-starv 16683 df-sca 16684 df-vsca 16685 df-ip 16686 df-tset 16687 df-ple 16688 df-ds 16690 df-unif 16691 df-hom 16692 df-cco 16693 df-rest 16799 df-topn 16800 df-0g 16818 df-gsum 16819 df-topgen 16820 df-pt 16821 df-prds 16824 df-ordt 16877 df-xrs 16878 df-qtop 16883 df-imas 16884 df-xps 16886 df-mre 16960 df-mrc 16961 df-acs 16963 df-ps 17926 df-tsr 17927 df-plusf 17967 df-mgm 17968 df-sgrp 18017 df-mnd 18028 df-mhm 18072 df-submnd 18073 df-grp 18222 df-minusg 18223 df-sbg 18224 df-mulg 18343 df-subg 18394 df-cntz 18565 df-cmn 19026 df-abl 19027 df-mgp 19359 df-ur 19371 df-ring 19418 df-cring 19419 df-subrg 19652 df-abv 19707 df-lmod 19755 df-scaf 19756 df-sra 20063 df-rgmod 20064 df-psmet 20209 df-xmet 20210 df-met 20211 df-bl 20212 df-mopn 20213 df-fbas 20214 df-fg 20215 df-cnfld 20218 df-top 21645 df-topon 21662 df-topsp 21684 df-bases 21697 df-cld 21770 df-ntr 21771 df-cls 21772 df-nei 21849 df-lp 21887 df-perf 21888 df-cn 21978 df-cnp 21979 df-haus 22066 df-tx 22313 df-hmeo 22506 df-fil 22597 df-fm 22689 df-flim 22690 df-flf 22691 df-tmd 22823 df-tgp 22824 df-tsms 22878 df-trg 22911 df-xms 23073 df-ms 23074 df-tms 23075 df-nm 23335 df-ngp 23336 df-nrg 23338 df-nlm 23339 df-ii 23629 df-cncf 23630 df-limc 24618 df-dv 24619 df-log 25300 df-esum 31566 df-siga 31647 df-sigagen 31677 df-brsiga 31720 df-meas 31734 df-mbfm 31788 df-prob 31945 df-rrv 31978 df-orvc 31993 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |