Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunctb2 Structured version   Visualization version   GIF version

Theorem iunctb2 35324
Description: Using the axiom of countable choice ax-cc 10062, the countable union of countable sets is countable. See iunctb 10201 for a somewhat more general theorem. (Contributed by ML, 10-Dec-2020.)
Assertion
Ref Expression
iunctb2 (∀𝑥 ∈ ω 𝐵 ≼ ω → 𝑥 ∈ ω 𝐵 ≼ ω)

Proof of Theorem iunctb2
StepHypRef Expression
1 omex 9271 . . 3 ω ∈ V
2 domrefg 8674 . . 3 (ω ∈ V → ω ≼ ω)
31, 2ax-mp 5 . 2 ω ≼ ω
4 iunctb 10201 . 2 ((ω ≼ ω ∧ ∀𝑥 ∈ ω 𝐵 ≼ ω) → 𝑥 ∈ ω 𝐵 ≼ ω)
53, 4mpan 690 1 (∀𝑥 ∈ ω 𝐵 ≼ ω → 𝑥 ∈ ω 𝐵 ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wral 3062  Vcvv 3415   ciun 4913   class class class wbr 5062  ωcom 7653  cdom 8633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5188  ax-sep 5201  ax-nul 5208  ax-pow 5267  ax-pr 5331  ax-un 7532  ax-inf2 9269  ax-cc 10062
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3417  df-sbc 3704  df-csb 3821  df-dif 3878  df-un 3880  df-in 3882  df-ss 3892  df-pss 3894  df-nul 4247  df-if 4449  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4829  df-int 4869  df-iun 4915  df-br 5063  df-opab 5125  df-mpt 5145  df-tr 5171  df-id 5464  df-eprel 5469  df-po 5477  df-so 5478  df-fr 5518  df-se 5519  df-we 5520  df-xp 5566  df-rel 5567  df-cnv 5568  df-co 5569  df-dm 5570  df-rn 5571  df-res 5572  df-ima 5573  df-pred 6169  df-ord 6225  df-on 6226  df-lim 6227  df-suc 6228  df-iota 6347  df-fun 6391  df-fn 6392  df-f 6393  df-f1 6394  df-fo 6395  df-f1o 6396  df-fv 6397  df-isom 6398  df-riota 7179  df-ov 7225  df-oprab 7226  df-mpo 7227  df-om 7654  df-1st 7770  df-2nd 7771  df-wrecs 8056  df-recs 8117  df-rdg 8155  df-1o 8211  df-er 8400  df-map 8519  df-en 8636  df-dom 8637  df-sdom 8638  df-fin 8639  df-oi 9139  df-card 9568  df-acn 9571
This theorem is referenced by:  ctbssinf  35327
  Copyright terms: Public domain W3C validator