Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iunctb2 | Structured version Visualization version GIF version |
Description: Using the axiom of countable choice ax-cc 10062, the countable union of countable sets is countable. See iunctb 10201 for a somewhat more general theorem. (Contributed by ML, 10-Dec-2020.) |
Ref | Expression |
---|---|
iunctb2 | ⊢ (∀𝑥 ∈ ω 𝐵 ≼ ω → ∪ 𝑥 ∈ ω 𝐵 ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 9271 | . . 3 ⊢ ω ∈ V | |
2 | domrefg 8674 | . . 3 ⊢ (ω ∈ V → ω ≼ ω) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ω ≼ ω |
4 | iunctb 10201 | . 2 ⊢ ((ω ≼ ω ∧ ∀𝑥 ∈ ω 𝐵 ≼ ω) → ∪ 𝑥 ∈ ω 𝐵 ≼ ω) | |
5 | 3, 4 | mpan 690 | 1 ⊢ (∀𝑥 ∈ ω 𝐵 ≼ ω → ∪ 𝑥 ∈ ω 𝐵 ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 ∀wral 3062 Vcvv 3415 ∪ ciun 4913 class class class wbr 5062 ωcom 7653 ≼ cdom 8633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5188 ax-sep 5201 ax-nul 5208 ax-pow 5267 ax-pr 5331 ax-un 7532 ax-inf2 9269 ax-cc 10062 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3417 df-sbc 3704 df-csb 3821 df-dif 3878 df-un 3880 df-in 3882 df-ss 3892 df-pss 3894 df-nul 4247 df-if 4449 df-pw 4524 df-sn 4551 df-pr 4553 df-tp 4555 df-op 4557 df-uni 4829 df-int 4869 df-iun 4915 df-br 5063 df-opab 5125 df-mpt 5145 df-tr 5171 df-id 5464 df-eprel 5469 df-po 5477 df-so 5478 df-fr 5518 df-se 5519 df-we 5520 df-xp 5566 df-rel 5567 df-cnv 5568 df-co 5569 df-dm 5570 df-rn 5571 df-res 5572 df-ima 5573 df-pred 6169 df-ord 6225 df-on 6226 df-lim 6227 df-suc 6228 df-iota 6347 df-fun 6391 df-fn 6392 df-f 6393 df-f1 6394 df-fo 6395 df-f1o 6396 df-fv 6397 df-isom 6398 df-riota 7179 df-ov 7225 df-oprab 7226 df-mpo 7227 df-om 7654 df-1st 7770 df-2nd 7771 df-wrecs 8056 df-recs 8117 df-rdg 8155 df-1o 8211 df-er 8400 df-map 8519 df-en 8636 df-dom 8637 df-sdom 8638 df-fin 8639 df-oi 9139 df-card 9568 df-acn 9571 |
This theorem is referenced by: ctbssinf 35327 |
Copyright terms: Public domain | W3C validator |