| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iunctb2 | Structured version Visualization version GIF version | ||
| Description: Using the axiom of countable choice ax-cc 10406, the countable union of countable sets is countable. See iunctb 10545 for a somewhat more general theorem. (Contributed by ML, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| iunctb2 | ⊢ (∀𝑥 ∈ ω 𝐵 ≼ ω → ∪ 𝑥 ∈ ω 𝐵 ≼ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 9614 | . . 3 ⊢ ω ∈ V | |
| 2 | domrefg 8964 | . . 3 ⊢ (ω ∈ V → ω ≼ ω) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ω ≼ ω |
| 4 | iunctb 10545 | . 2 ⊢ ((ω ≼ ω ∧ ∀𝑥 ∈ ω 𝐵 ≼ ω) → ∪ 𝑥 ∈ ω 𝐵 ≼ ω) | |
| 5 | 3, 4 | mpan 690 | 1 ⊢ (∀𝑥 ∈ ω 𝐵 ≼ ω → ∪ 𝑥 ∈ ω 𝐵 ≼ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3046 Vcvv 3455 ∪ ciun 4963 class class class wbr 5115 ωcom 7850 ≼ cdom 8920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-inf2 9612 ax-cc 10406 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-er 8682 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-oi 9481 df-card 9910 df-acn 9913 |
| This theorem is referenced by: ctbssinf 37391 |
| Copyright terms: Public domain | W3C validator |