![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > eigvalval | Structured version Visualization version GIF version |
Description: The eigenvalue of an eigenvector of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eigvalval | β’ ((π: ββΆ β β§ π΄ β (eigvecβπ)) β ((eigvalβπ)βπ΄) = (((πβπ΄) Β·ih π΄) / ((normββπ΄)β2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eigvalfval 31585 | . . 3 β’ (π: ββΆ β β (eigvalβπ) = (π₯ β (eigvecβπ) β¦ (((πβπ₯) Β·ih π₯) / ((normββπ₯)β2)))) | |
2 | 1 | fveq1d 6883 | . 2 β’ (π: ββΆ β β ((eigvalβπ)βπ΄) = ((π₯ β (eigvecβπ) β¦ (((πβπ₯) Β·ih π₯) / ((normββπ₯)β2)))βπ΄)) |
3 | fveq2 6881 | . . . . 5 β’ (π₯ = π΄ β (πβπ₯) = (πβπ΄)) | |
4 | id 22 | . . . . 5 β’ (π₯ = π΄ β π₯ = π΄) | |
5 | 3, 4 | oveq12d 7419 | . . . 4 β’ (π₯ = π΄ β ((πβπ₯) Β·ih π₯) = ((πβπ΄) Β·ih π΄)) |
6 | fveq2 6881 | . . . . 5 β’ (π₯ = π΄ β (normββπ₯) = (normββπ΄)) | |
7 | 6 | oveq1d 7416 | . . . 4 β’ (π₯ = π΄ β ((normββπ₯)β2) = ((normββπ΄)β2)) |
8 | 5, 7 | oveq12d 7419 | . . 3 β’ (π₯ = π΄ β (((πβπ₯) Β·ih π₯) / ((normββπ₯)β2)) = (((πβπ΄) Β·ih π΄) / ((normββπ΄)β2))) |
9 | eqid 2724 | . . 3 β’ (π₯ β (eigvecβπ) β¦ (((πβπ₯) Β·ih π₯) / ((normββπ₯)β2))) = (π₯ β (eigvecβπ) β¦ (((πβπ₯) Β·ih π₯) / ((normββπ₯)β2))) | |
10 | ovex 7434 | . . 3 β’ (((πβπ΄) Β·ih π΄) / ((normββπ΄)β2)) β V | |
11 | 8, 9, 10 | fvmpt 6988 | . 2 β’ (π΄ β (eigvecβπ) β ((π₯ β (eigvecβπ) β¦ (((πβπ₯) Β·ih π₯) / ((normββπ₯)β2)))βπ΄) = (((πβπ΄) Β·ih π΄) / ((normββπ΄)β2))) |
12 | 2, 11 | sylan9eq 2784 | 1 β’ ((π: ββΆ β β§ π΄ β (eigvecβπ)) β ((eigvalβπ)βπ΄) = (((πβπ΄) Β·ih π΄) / ((normββπ΄)β2))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β¦ cmpt 5221 βΆwf 6529 βcfv 6533 (class class class)co 7401 / cdiv 11867 2c2 12263 βcexp 14023 βchba 30607 Β·ih csp 30610 normβcno 30611 eigveccei 30647 eigvalcel 30648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-hilex 30687 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-map 8817 df-eigval 31542 |
This theorem is referenced by: eigvalcl 31649 eigvec1 31650 |
Copyright terms: Public domain | W3C validator |