HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigvalval Structured version   Visualization version   GIF version

Theorem eigvalval 31842
Description: The eigenvalue of an eigenvector of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
eigvalval ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) = (((𝑇𝐴) ·ih 𝐴) / ((norm𝐴)↑2)))

Proof of Theorem eigvalval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eigvalfval 31779 . . 3 (𝑇: ℋ⟶ ℋ → (eigval‘𝑇) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
21fveq1d 6898 . 2 (𝑇: ℋ⟶ ℋ → ((eigval‘𝑇)‘𝐴) = ((𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2)))‘𝐴))
3 fveq2 6896 . . . . 5 (𝑥 = 𝐴 → (𝑇𝑥) = (𝑇𝐴))
4 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
53, 4oveq12d 7437 . . . 4 (𝑥 = 𝐴 → ((𝑇𝑥) ·ih 𝑥) = ((𝑇𝐴) ·ih 𝐴))
6 fveq2 6896 . . . . 5 (𝑥 = 𝐴 → (norm𝑥) = (norm𝐴))
76oveq1d 7434 . . . 4 (𝑥 = 𝐴 → ((norm𝑥)↑2) = ((norm𝐴)↑2))
85, 7oveq12d 7437 . . 3 (𝑥 = 𝐴 → (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2)) = (((𝑇𝐴) ·ih 𝐴) / ((norm𝐴)↑2)))
9 eqid 2725 . . 3 (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2))) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2)))
10 ovex 7452 . . 3 (((𝑇𝐴) ·ih 𝐴) / ((norm𝐴)↑2)) ∈ V
118, 9, 10fvmpt 7004 . 2 (𝐴 ∈ (eigvec‘𝑇) → ((𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2)))‘𝐴) = (((𝑇𝐴) ·ih 𝐴) / ((norm𝐴)↑2)))
122, 11sylan9eq 2785 1 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) = (((𝑇𝐴) ·ih 𝐴) / ((norm𝐴)↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cmpt 5232  wf 6545  cfv 6549  (class class class)co 7419   / cdiv 11903  2c2 12300  cexp 14062  chba 30801   ·ih csp 30804  normcno 30805  eigveccei 30841  eigvalcel 30842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-hilex 30881
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-map 8847  df-eigval 31736
This theorem is referenced by:  eigvalcl  31843  eigvec1  31844
  Copyright terms: Public domain W3C validator