| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > eigvalval | Structured version Visualization version GIF version | ||
| Description: The eigenvalue of an eigenvector of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| eigvalval | ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) = (((𝑇‘𝐴) ·ih 𝐴) / ((normℎ‘𝐴)↑2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eigvalfval 31881 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (eigval‘𝑇) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))) | |
| 2 | 1 | fveq1d 6832 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → ((eigval‘𝑇)‘𝐴) = ((𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))‘𝐴)) |
| 3 | fveq2 6830 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑇‘𝑥) = (𝑇‘𝐴)) | |
| 4 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 5 | 3, 4 | oveq12d 7372 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑇‘𝑥) ·ih 𝑥) = ((𝑇‘𝐴) ·ih 𝐴)) |
| 6 | fveq2 6830 | . . . . 5 ⊢ (𝑥 = 𝐴 → (normℎ‘𝑥) = (normℎ‘𝐴)) | |
| 7 | 6 | oveq1d 7369 | . . . 4 ⊢ (𝑥 = 𝐴 → ((normℎ‘𝑥)↑2) = ((normℎ‘𝐴)↑2)) |
| 8 | 5, 7 | oveq12d 7372 | . . 3 ⊢ (𝑥 = 𝐴 → (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)) = (((𝑇‘𝐴) ·ih 𝐴) / ((normℎ‘𝐴)↑2))) |
| 9 | eqid 2733 | . . 3 ⊢ (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2))) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2))) | |
| 10 | ovex 7387 | . . 3 ⊢ (((𝑇‘𝐴) ·ih 𝐴) / ((normℎ‘𝐴)↑2)) ∈ V | |
| 11 | 8, 9, 10 | fvmpt 6937 | . 2 ⊢ (𝐴 ∈ (eigvec‘𝑇) → ((𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))‘𝐴) = (((𝑇‘𝐴) ·ih 𝐴) / ((normℎ‘𝐴)↑2))) |
| 12 | 2, 11 | sylan9eq 2788 | 1 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) = (((𝑇‘𝐴) ·ih 𝐴) / ((normℎ‘𝐴)↑2))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ↦ cmpt 5176 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 / cdiv 11783 2c2 12189 ↑cexp 13972 ℋchba 30903 ·ih csp 30906 normℎcno 30907 eigveccei 30943 eigvalcel 30944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-hilex 30983 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-map 8760 df-eigval 31838 |
| This theorem is referenced by: eigvalcl 31945 eigvec1 31946 |
| Copyright terms: Public domain | W3C validator |