HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigvalval Structured version   Visualization version   GIF version

Theorem eigvalval 31989
Description: The eigenvalue of an eigenvector of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
eigvalval ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) = (((𝑇𝐴) ·ih 𝐴) / ((norm𝐴)↑2)))

Proof of Theorem eigvalval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eigvalfval 31926 . . 3 (𝑇: ℋ⟶ ℋ → (eigval‘𝑇) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
21fveq1d 6909 . 2 (𝑇: ℋ⟶ ℋ → ((eigval‘𝑇)‘𝐴) = ((𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2)))‘𝐴))
3 fveq2 6907 . . . . 5 (𝑥 = 𝐴 → (𝑇𝑥) = (𝑇𝐴))
4 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
53, 4oveq12d 7449 . . . 4 (𝑥 = 𝐴 → ((𝑇𝑥) ·ih 𝑥) = ((𝑇𝐴) ·ih 𝐴))
6 fveq2 6907 . . . . 5 (𝑥 = 𝐴 → (norm𝑥) = (norm𝐴))
76oveq1d 7446 . . . 4 (𝑥 = 𝐴 → ((norm𝑥)↑2) = ((norm𝐴)↑2))
85, 7oveq12d 7449 . . 3 (𝑥 = 𝐴 → (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2)) = (((𝑇𝐴) ·ih 𝐴) / ((norm𝐴)↑2)))
9 eqid 2735 . . 3 (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2))) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2)))
10 ovex 7464 . . 3 (((𝑇𝐴) ·ih 𝐴) / ((norm𝐴)↑2)) ∈ V
118, 9, 10fvmpt 7016 . 2 (𝐴 ∈ (eigvec‘𝑇) → ((𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2)))‘𝐴) = (((𝑇𝐴) ·ih 𝐴) / ((norm𝐴)↑2)))
122, 11sylan9eq 2795 1 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) = (((𝑇𝐴) ·ih 𝐴) / ((norm𝐴)↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431   / cdiv 11918  2c2 12319  cexp 14099  chba 30948   ·ih csp 30951  normcno 30952  eigveccei 30988  eigvalcel 30989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-hilex 31028
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-eigval 31883
This theorem is referenced by:  eigvalcl  31990  eigvec1  31991
  Copyright terms: Public domain W3C validator