HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigvalval Structured version   Visualization version   GIF version

Theorem eigvalval 31946
Description: The eigenvalue of an eigenvector of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
eigvalval ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) = (((𝑇𝐴) ·ih 𝐴) / ((norm𝐴)↑2)))

Proof of Theorem eigvalval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eigvalfval 31883 . . 3 (𝑇: ℋ⟶ ℋ → (eigval‘𝑇) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
21fveq1d 6883 . 2 (𝑇: ℋ⟶ ℋ → ((eigval‘𝑇)‘𝐴) = ((𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2)))‘𝐴))
3 fveq2 6881 . . . . 5 (𝑥 = 𝐴 → (𝑇𝑥) = (𝑇𝐴))
4 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
53, 4oveq12d 7428 . . . 4 (𝑥 = 𝐴 → ((𝑇𝑥) ·ih 𝑥) = ((𝑇𝐴) ·ih 𝐴))
6 fveq2 6881 . . . . 5 (𝑥 = 𝐴 → (norm𝑥) = (norm𝐴))
76oveq1d 7425 . . . 4 (𝑥 = 𝐴 → ((norm𝑥)↑2) = ((norm𝐴)↑2))
85, 7oveq12d 7428 . . 3 (𝑥 = 𝐴 → (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2)) = (((𝑇𝐴) ·ih 𝐴) / ((norm𝐴)↑2)))
9 eqid 2736 . . 3 (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2))) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2)))
10 ovex 7443 . . 3 (((𝑇𝐴) ·ih 𝐴) / ((norm𝐴)↑2)) ∈ V
118, 9, 10fvmpt 6991 . 2 (𝐴 ∈ (eigvec‘𝑇) → ((𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2)))‘𝐴) = (((𝑇𝐴) ·ih 𝐴) / ((norm𝐴)↑2)))
122, 11sylan9eq 2791 1 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) = (((𝑇𝐴) ·ih 𝐴) / ((norm𝐴)↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5206  wf 6532  cfv 6536  (class class class)co 7410   / cdiv 11899  2c2 12300  cexp 14084  chba 30905   ·ih csp 30908  normcno 30909  eigveccei 30945  eigvalcel 30946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-hilex 30985
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-eigval 31840
This theorem is referenced by:  eigvalcl  31947  eigvec1  31948
  Copyright terms: Public domain W3C validator