Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > eigvalval | Structured version Visualization version GIF version |
Description: The eigenvalue of an eigenvector of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eigvalval | ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) = (((𝑇‘𝐴) ·ih 𝐴) / ((normℎ‘𝐴)↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eigvalfval 30259 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (eigval‘𝑇) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))) | |
2 | 1 | fveq1d 6776 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → ((eigval‘𝑇)‘𝐴) = ((𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))‘𝐴)) |
3 | fveq2 6774 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑇‘𝑥) = (𝑇‘𝐴)) | |
4 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
5 | 3, 4 | oveq12d 7293 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑇‘𝑥) ·ih 𝑥) = ((𝑇‘𝐴) ·ih 𝐴)) |
6 | fveq2 6774 | . . . . 5 ⊢ (𝑥 = 𝐴 → (normℎ‘𝑥) = (normℎ‘𝐴)) | |
7 | 6 | oveq1d 7290 | . . . 4 ⊢ (𝑥 = 𝐴 → ((normℎ‘𝑥)↑2) = ((normℎ‘𝐴)↑2)) |
8 | 5, 7 | oveq12d 7293 | . . 3 ⊢ (𝑥 = 𝐴 → (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)) = (((𝑇‘𝐴) ·ih 𝐴) / ((normℎ‘𝐴)↑2))) |
9 | eqid 2738 | . . 3 ⊢ (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2))) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2))) | |
10 | ovex 7308 | . . 3 ⊢ (((𝑇‘𝐴) ·ih 𝐴) / ((normℎ‘𝐴)↑2)) ∈ V | |
11 | 8, 9, 10 | fvmpt 6875 | . 2 ⊢ (𝐴 ∈ (eigvec‘𝑇) → ((𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))‘𝐴) = (((𝑇‘𝐴) ·ih 𝐴) / ((normℎ‘𝐴)↑2))) |
12 | 2, 11 | sylan9eq 2798 | 1 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) = (((𝑇‘𝐴) ·ih 𝐴) / ((normℎ‘𝐴)↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ↦ cmpt 5157 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 / cdiv 11632 2c2 12028 ↑cexp 13782 ℋchba 29281 ·ih csp 29284 normℎcno 29285 eigveccei 29321 eigvalcel 29322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-hilex 29361 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-eigval 30216 |
This theorem is referenced by: eigvalcl 30323 eigvec1 30324 |
Copyright terms: Public domain | W3C validator |