HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigvalval Structured version   Visualization version   GIF version

Theorem eigvalval 30223
Description: The eigenvalue of an eigenvector of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
eigvalval ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) = (((𝑇𝐴) ·ih 𝐴) / ((norm𝐴)↑2)))

Proof of Theorem eigvalval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eigvalfval 30160 . . 3 (𝑇: ℋ⟶ ℋ → (eigval‘𝑇) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
21fveq1d 6758 . 2 (𝑇: ℋ⟶ ℋ → ((eigval‘𝑇)‘𝐴) = ((𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2)))‘𝐴))
3 fveq2 6756 . . . . 5 (𝑥 = 𝐴 → (𝑇𝑥) = (𝑇𝐴))
4 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
53, 4oveq12d 7273 . . . 4 (𝑥 = 𝐴 → ((𝑇𝑥) ·ih 𝑥) = ((𝑇𝐴) ·ih 𝐴))
6 fveq2 6756 . . . . 5 (𝑥 = 𝐴 → (norm𝑥) = (norm𝐴))
76oveq1d 7270 . . . 4 (𝑥 = 𝐴 → ((norm𝑥)↑2) = ((norm𝐴)↑2))
85, 7oveq12d 7273 . . 3 (𝑥 = 𝐴 → (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2)) = (((𝑇𝐴) ·ih 𝐴) / ((norm𝐴)↑2)))
9 eqid 2738 . . 3 (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2))) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2)))
10 ovex 7288 . . 3 (((𝑇𝐴) ·ih 𝐴) / ((norm𝐴)↑2)) ∈ V
118, 9, 10fvmpt 6857 . 2 (𝐴 ∈ (eigvec‘𝑇) → ((𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇𝑥) ·ih 𝑥) / ((norm𝑥)↑2)))‘𝐴) = (((𝑇𝐴) ·ih 𝐴) / ((norm𝐴)↑2)))
122, 11sylan9eq 2799 1 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) = (((𝑇𝐴) ·ih 𝐴) / ((norm𝐴)↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255   / cdiv 11562  2c2 11958  cexp 13710  chba 29182   ·ih csp 29185  normcno 29186  eigveccei 29222  eigvalcel 29223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-hilex 29262
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-eigval 30117
This theorem is referenced by:  eigvalcl  30224  eigvec1  30225
  Copyright terms: Public domain W3C validator