| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > eigvalval | Structured version Visualization version GIF version | ||
| Description: The eigenvalue of an eigenvector of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| eigvalval | ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) = (((𝑇‘𝐴) ·ih 𝐴) / ((normℎ‘𝐴)↑2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eigvalfval 31833 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (eigval‘𝑇) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))) | |
| 2 | 1 | fveq1d 6863 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → ((eigval‘𝑇)‘𝐴) = ((𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))‘𝐴)) |
| 3 | fveq2 6861 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑇‘𝑥) = (𝑇‘𝐴)) | |
| 4 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 5 | 3, 4 | oveq12d 7408 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑇‘𝑥) ·ih 𝑥) = ((𝑇‘𝐴) ·ih 𝐴)) |
| 6 | fveq2 6861 | . . . . 5 ⊢ (𝑥 = 𝐴 → (normℎ‘𝑥) = (normℎ‘𝐴)) | |
| 7 | 6 | oveq1d 7405 | . . . 4 ⊢ (𝑥 = 𝐴 → ((normℎ‘𝑥)↑2) = ((normℎ‘𝐴)↑2)) |
| 8 | 5, 7 | oveq12d 7408 | . . 3 ⊢ (𝑥 = 𝐴 → (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)) = (((𝑇‘𝐴) ·ih 𝐴) / ((normℎ‘𝐴)↑2))) |
| 9 | eqid 2730 | . . 3 ⊢ (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2))) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2))) | |
| 10 | ovex 7423 | . . 3 ⊢ (((𝑇‘𝐴) ·ih 𝐴) / ((normℎ‘𝐴)↑2)) ∈ V | |
| 11 | 8, 9, 10 | fvmpt 6971 | . 2 ⊢ (𝐴 ∈ (eigvec‘𝑇) → ((𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))‘𝐴) = (((𝑇‘𝐴) ·ih 𝐴) / ((normℎ‘𝐴)↑2))) |
| 12 | 2, 11 | sylan9eq 2785 | 1 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) = (((𝑇‘𝐴) ·ih 𝐴) / ((normℎ‘𝐴)↑2))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5191 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 / cdiv 11842 2c2 12248 ↑cexp 14033 ℋchba 30855 ·ih csp 30858 normℎcno 30859 eigveccei 30895 eigvalcel 30896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-hilex 30935 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-eigval 31790 |
| This theorem is referenced by: eigvalcl 31897 eigvec1 31898 |
| Copyright terms: Public domain | W3C validator |