HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigvalval Structured version   Visualization version   GIF version

Theorem eigvalval 31648
Description: The eigenvalue of an eigenvector of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
eigvalval ((𝑇: β„‹βŸΆ β„‹ ∧ 𝐴 ∈ (eigvecβ€˜π‘‡)) β†’ ((eigvalβ€˜π‘‡)β€˜π΄) = (((π‘‡β€˜π΄) Β·ih 𝐴) / ((normβ„Žβ€˜π΄)↑2)))

Proof of Theorem eigvalval
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 eigvalfval 31585 . . 3 (𝑇: β„‹βŸΆ β„‹ β†’ (eigvalβ€˜π‘‡) = (π‘₯ ∈ (eigvecβ€˜π‘‡) ↦ (((π‘‡β€˜π‘₯) Β·ih π‘₯) / ((normβ„Žβ€˜π‘₯)↑2))))
21fveq1d 6883 . 2 (𝑇: β„‹βŸΆ β„‹ β†’ ((eigvalβ€˜π‘‡)β€˜π΄) = ((π‘₯ ∈ (eigvecβ€˜π‘‡) ↦ (((π‘‡β€˜π‘₯) Β·ih π‘₯) / ((normβ„Žβ€˜π‘₯)↑2)))β€˜π΄))
3 fveq2 6881 . . . . 5 (π‘₯ = 𝐴 β†’ (π‘‡β€˜π‘₯) = (π‘‡β€˜π΄))
4 id 22 . . . . 5 (π‘₯ = 𝐴 β†’ π‘₯ = 𝐴)
53, 4oveq12d 7419 . . . 4 (π‘₯ = 𝐴 β†’ ((π‘‡β€˜π‘₯) Β·ih π‘₯) = ((π‘‡β€˜π΄) Β·ih 𝐴))
6 fveq2 6881 . . . . 5 (π‘₯ = 𝐴 β†’ (normβ„Žβ€˜π‘₯) = (normβ„Žβ€˜π΄))
76oveq1d 7416 . . . 4 (π‘₯ = 𝐴 β†’ ((normβ„Žβ€˜π‘₯)↑2) = ((normβ„Žβ€˜π΄)↑2))
85, 7oveq12d 7419 . . 3 (π‘₯ = 𝐴 β†’ (((π‘‡β€˜π‘₯) Β·ih π‘₯) / ((normβ„Žβ€˜π‘₯)↑2)) = (((π‘‡β€˜π΄) Β·ih 𝐴) / ((normβ„Žβ€˜π΄)↑2)))
9 eqid 2724 . . 3 (π‘₯ ∈ (eigvecβ€˜π‘‡) ↦ (((π‘‡β€˜π‘₯) Β·ih π‘₯) / ((normβ„Žβ€˜π‘₯)↑2))) = (π‘₯ ∈ (eigvecβ€˜π‘‡) ↦ (((π‘‡β€˜π‘₯) Β·ih π‘₯) / ((normβ„Žβ€˜π‘₯)↑2)))
10 ovex 7434 . . 3 (((π‘‡β€˜π΄) Β·ih 𝐴) / ((normβ„Žβ€˜π΄)↑2)) ∈ V
118, 9, 10fvmpt 6988 . 2 (𝐴 ∈ (eigvecβ€˜π‘‡) β†’ ((π‘₯ ∈ (eigvecβ€˜π‘‡) ↦ (((π‘‡β€˜π‘₯) Β·ih π‘₯) / ((normβ„Žβ€˜π‘₯)↑2)))β€˜π΄) = (((π‘‡β€˜π΄) Β·ih 𝐴) / ((normβ„Žβ€˜π΄)↑2)))
122, 11sylan9eq 2784 1 ((𝑇: β„‹βŸΆ β„‹ ∧ 𝐴 ∈ (eigvecβ€˜π‘‡)) β†’ ((eigvalβ€˜π‘‡)β€˜π΄) = (((π‘‡β€˜π΄) Β·ih 𝐴) / ((normβ„Žβ€˜π΄)↑2)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098   ↦ cmpt 5221  βŸΆwf 6529  β€˜cfv 6533  (class class class)co 7401   / cdiv 11867  2c2 12263  β†‘cexp 14023   β„‹chba 30607   Β·ih csp 30610  normβ„Žcno 30611  eigveccei 30647  eigvalcel 30648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-hilex 30687
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-map 8817  df-eigval 31542
This theorem is referenced by:  eigvalcl  31649  eigvec1  31650
  Copyright terms: Public domain W3C validator