| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > eigvalval | Structured version Visualization version GIF version | ||
| Description: The eigenvalue of an eigenvector of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| eigvalval | ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) = (((𝑇‘𝐴) ·ih 𝐴) / ((normℎ‘𝐴)↑2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eigvalfval 31875 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (eigval‘𝑇) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))) | |
| 2 | 1 | fveq1d 6824 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → ((eigval‘𝑇)‘𝐴) = ((𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))‘𝐴)) |
| 3 | fveq2 6822 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑇‘𝑥) = (𝑇‘𝐴)) | |
| 4 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 5 | 3, 4 | oveq12d 7364 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑇‘𝑥) ·ih 𝑥) = ((𝑇‘𝐴) ·ih 𝐴)) |
| 6 | fveq2 6822 | . . . . 5 ⊢ (𝑥 = 𝐴 → (normℎ‘𝑥) = (normℎ‘𝐴)) | |
| 7 | 6 | oveq1d 7361 | . . . 4 ⊢ (𝑥 = 𝐴 → ((normℎ‘𝑥)↑2) = ((normℎ‘𝐴)↑2)) |
| 8 | 5, 7 | oveq12d 7364 | . . 3 ⊢ (𝑥 = 𝐴 → (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)) = (((𝑇‘𝐴) ·ih 𝐴) / ((normℎ‘𝐴)↑2))) |
| 9 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2))) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2))) | |
| 10 | ovex 7379 | . . 3 ⊢ (((𝑇‘𝐴) ·ih 𝐴) / ((normℎ‘𝐴)↑2)) ∈ V | |
| 11 | 8, 9, 10 | fvmpt 6929 | . 2 ⊢ (𝐴 ∈ (eigvec‘𝑇) → ((𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))‘𝐴) = (((𝑇‘𝐴) ·ih 𝐴) / ((normℎ‘𝐴)↑2))) |
| 12 | 2, 11 | sylan9eq 2786 | 1 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) = (((𝑇‘𝐴) ·ih 𝐴) / ((normℎ‘𝐴)↑2))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ↦ cmpt 5172 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 / cdiv 11774 2c2 12180 ↑cexp 13968 ℋchba 30897 ·ih csp 30900 normℎcno 30901 eigveccei 30937 eigvalcel 30938 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-hilex 30977 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-eigval 31832 |
| This theorem is referenced by: eigvalcl 31939 eigvec1 31940 |
| Copyright terms: Public domain | W3C validator |