![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnopconi | Structured version Visualization version GIF version |
Description: A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnopcon.1 | ⊢ 𝑇 ∈ LinOp |
Ref | Expression |
---|---|
lnopconi | ⊢ (𝑇 ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (normℎ‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnopcon.1 | . . 3 ⊢ 𝑇 ∈ LinOp | |
2 | nmcopex 31911 | . . 3 ⊢ ((𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp) → (normop‘𝑇) ∈ ℝ) | |
3 | 1, 2 | mpan 688 | . 2 ⊢ (𝑇 ∈ ContOp → (normop‘𝑇) ∈ ℝ) |
4 | nmcoplb 31912 | . . 3 ⊢ ((𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ∧ 𝑦 ∈ ℋ) → (normℎ‘(𝑇‘𝑦)) ≤ ((normop‘𝑇) · (normℎ‘𝑦))) | |
5 | 1, 4 | mp3an1 1444 | . 2 ⊢ ((𝑇 ∈ ContOp ∧ 𝑦 ∈ ℋ) → (normℎ‘(𝑇‘𝑦)) ≤ ((normop‘𝑇) · (normℎ‘𝑦))) |
6 | 1 | lnopfi 31851 | . . 3 ⊢ 𝑇: ℋ⟶ ℋ |
7 | elcnop 31739 | . . 3 ⊢ (𝑇 ∈ ContOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℝ+ ∃𝑦 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦 → (normℎ‘((𝑇‘𝑤) −ℎ (𝑇‘𝑥))) < 𝑧))) | |
8 | 6, 7 | mpbiran 707 | . 2 ⊢ (𝑇 ∈ ContOp ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℝ+ ∃𝑦 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦 → (normℎ‘((𝑇‘𝑤) −ℎ (𝑇‘𝑥))) < 𝑧)) |
9 | 6 | ffvelcdmi 7092 | . . 3 ⊢ (𝑦 ∈ ℋ → (𝑇‘𝑦) ∈ ℋ) |
10 | normcl 31007 | . . 3 ⊢ ((𝑇‘𝑦) ∈ ℋ → (normℎ‘(𝑇‘𝑦)) ∈ ℝ) | |
11 | 9, 10 | syl 17 | . 2 ⊢ (𝑦 ∈ ℋ → (normℎ‘(𝑇‘𝑦)) ∈ ℝ) |
12 | 1 | lnopsubi 31856 | . 2 ⊢ ((𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘(𝑤 −ℎ 𝑥)) = ((𝑇‘𝑤) −ℎ (𝑇‘𝑥))) |
13 | 3, 5, 8, 11, 12 | lnconi 31915 | 1 ⊢ (𝑇 ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (normℎ‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2098 ∀wral 3050 ∃wrex 3059 class class class wbr 5149 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 ℝcr 11139 · cmul 11145 < clt 11280 ≤ cle 11281 ℝ+crp 13009 ℋchba 30801 normℎcno 30805 −ℎ cmv 30807 normopcnop 30827 ContOpccop 30828 LinOpclo 30829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 ax-hilex 30881 ax-hfvadd 30882 ax-hvcom 30883 ax-hvass 30884 ax-hv0cl 30885 ax-hvaddid 30886 ax-hfvmul 30887 ax-hvmulid 30888 ax-hvmulass 30889 ax-hvdistr1 30890 ax-hvdistr2 30891 ax-hvmul0 30892 ax-hfi 30961 ax-his1 30964 ax-his2 30965 ax-his3 30966 ax-his4 30967 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9467 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-n0 12506 df-z 12592 df-uz 12856 df-rp 13010 df-seq 14003 df-exp 14063 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-grpo 30375 df-gid 30376 df-ablo 30427 df-vc 30441 df-nv 30474 df-va 30477 df-ba 30478 df-sm 30479 df-0v 30480 df-nmcv 30482 df-hnorm 30850 df-hba 30851 df-hvsub 30853 df-nmop 31721 df-cnop 31722 df-lnop 31723 df-unop 31725 |
This theorem is referenced by: lnopcon 31917 cnlnadjlem8 31956 |
Copyright terms: Public domain | W3C validator |