HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopconi Structured version   Visualization version   GIF version

Theorem lnopconi 32014
Description: A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnopcon.1 𝑇 ∈ LinOp
Assertion
Ref Expression
lnopconi (𝑇 ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (norm‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)))
Distinct variable group:   𝑥,𝑦,𝑇

Proof of Theorem lnopconi
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnopcon.1 . . 3 𝑇 ∈ LinOp
2 nmcopex 32009 . . 3 ((𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp) → (normop𝑇) ∈ ℝ)
31, 2mpan 690 . 2 (𝑇 ∈ ContOp → (normop𝑇) ∈ ℝ)
4 nmcoplb 32010 . . 3 ((𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ∧ 𝑦 ∈ ℋ) → (norm‘(𝑇𝑦)) ≤ ((normop𝑇) · (norm𝑦)))
51, 4mp3an1 1450 . 2 ((𝑇 ∈ ContOp ∧ 𝑦 ∈ ℋ) → (norm‘(𝑇𝑦)) ≤ ((normop𝑇) · (norm𝑦)))
61lnopfi 31949 . . 3 𝑇: ℋ⟶ ℋ
7 elcnop 31837 . . 3 (𝑇 ∈ ContOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (norm‘((𝑇𝑤) − (𝑇𝑥))) < 𝑧)))
86, 7mpbiran 709 . 2 (𝑇 ∈ ContOp ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (norm‘((𝑇𝑤) − (𝑇𝑥))) < 𝑧))
96ffvelcdmi 7037 . . 3 (𝑦 ∈ ℋ → (𝑇𝑦) ∈ ℋ)
10 normcl 31105 . . 3 ((𝑇𝑦) ∈ ℋ → (norm‘(𝑇𝑦)) ∈ ℝ)
119, 10syl 17 . 2 (𝑦 ∈ ℋ → (norm‘(𝑇𝑦)) ∈ ℝ)
121lnopsubi 31954 . 2 ((𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘(𝑤 𝑥)) = ((𝑇𝑤) − (𝑇𝑥)))
133, 5, 8, 11, 12lnconi 32013 1 (𝑇 ∈ ContOp ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (norm‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wral 3044  wrex 3053   class class class wbr 5102  wf 6495  cfv 6499  (class class class)co 7369  cr 11045   · cmul 11051   < clt 11186  cle 11187  +crp 12929  chba 30899  normcno 30903   cmv 30905  normopcnop 30925  ContOpccop 30926  LinOpclo 30927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124  ax-hilex 30979  ax-hfvadd 30980  ax-hvcom 30981  ax-hvass 30982  ax-hv0cl 30983  ax-hvaddid 30984  ax-hfvmul 30985  ax-hvmulid 30986  ax-hvmulass 30987  ax-hvdistr1 30988  ax-hvdistr2 30989  ax-hvmul0 30990  ax-hfi 31059  ax-his1 31062  ax-his2 31063  ax-his3 31064  ax-his4 31065
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-3 12228  df-4 12229  df-n0 12421  df-z 12508  df-uz 12772  df-rp 12930  df-seq 13945  df-exp 14005  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-grpo 30473  df-gid 30474  df-ablo 30525  df-vc 30539  df-nv 30572  df-va 30575  df-ba 30576  df-sm 30577  df-0v 30578  df-nmcv 30580  df-hnorm 30948  df-hba 30949  df-hvsub 30951  df-nmop 31819  df-cnop 31820  df-lnop 31821  df-unop 31823
This theorem is referenced by:  lnopcon  32015  cnlnadjlem8  32054
  Copyright terms: Public domain W3C validator