Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfzolem1 Structured version   Visualization version   GIF version

Theorem elfzolem1 40438
Description: A member in a half-open integer interval is less than or equal to the upper bound minus 1 . (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
elfzolem1 (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ≤ (𝑁 − 1))

Proof of Theorem elfzolem1
StepHypRef Expression
1 id 22 . 2 (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ (𝑀..^𝑁))
2 elfzoel2 12788 . 2 (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ)
3 simpl 476 . . . 4 ((𝐾 ∈ (𝑀..^𝑁) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ (𝑀..^𝑁))
4 fzoval 12790 . . . . 5 (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
54adantl 475 . . . 4 ((𝐾 ∈ (𝑀..^𝑁) ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
63, 5eleqtrd 2860 . . 3 ((𝐾 ∈ (𝑀..^𝑁) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ (𝑀...(𝑁 − 1)))
7 elfzle2 12662 . . 3 (𝐾 ∈ (𝑀...(𝑁 − 1)) → 𝐾 ≤ (𝑁 − 1))
86, 7syl 17 . 2 ((𝐾 ∈ (𝑀..^𝑁) ∧ 𝑁 ∈ ℤ) → 𝐾 ≤ (𝑁 − 1))
91, 2, 8syl2anc 579 1 (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ≤ (𝑁 − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2106   class class class wbr 4886  (class class class)co 6922  1c1 10273  cle 10412  cmin 10606  cz 11728  ...cfz 12643  ..^cfzo 12784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-1st 7445  df-2nd 7446  df-neg 10609  df-z 11729  df-uz 11993  df-fz 12644  df-fzo 12785
This theorem is referenced by:  iundjiun  41594
  Copyright terms: Public domain W3C validator