Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfzolem1 Structured version   Visualization version   GIF version

Theorem elfzolem1 45238
Description: A member in a half-open integer interval is less than or equal to the upper bound minus 1 . (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
elfzolem1 (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ≤ (𝑁 − 1))

Proof of Theorem elfzolem1
StepHypRef Expression
1 id 22 . 2 (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ (𝑀..^𝑁))
2 elfzoel2 13717 . 2 (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ)
3 simpl 482 . . . 4 ((𝐾 ∈ (𝑀..^𝑁) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ (𝑀..^𝑁))
4 fzoval 13719 . . . . 5 (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
54adantl 481 . . . 4 ((𝐾 ∈ (𝑀..^𝑁) ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
63, 5eleqtrd 2846 . . 3 ((𝐾 ∈ (𝑀..^𝑁) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ (𝑀...(𝑁 − 1)))
7 elfzle2 13590 . . 3 (𝐾 ∈ (𝑀...(𝑁 − 1)) → 𝐾 ≤ (𝑁 − 1))
86, 7syl 17 . 2 ((𝐾 ∈ (𝑀..^𝑁) ∧ 𝑁 ∈ ℤ) → 𝐾 ≤ (𝑁 − 1))
91, 2, 8syl2anc 583 1 (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ≤ (𝑁 − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108   class class class wbr 5166  (class class class)co 7450  1c1 11187  cle 11327  cmin 11522  cz 12641  ...cfz 13569  ..^cfzo 13713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-1st 8032  df-2nd 8033  df-neg 11525  df-z 12642  df-uz 12906  df-fz 13570  df-fzo 13714
This theorem is referenced by:  iundjiun  46383
  Copyright terms: Public domain W3C validator