MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzolem1 Structured version   Visualization version   GIF version

Theorem elfzolem1 13641
Description: A member in a half-open integer interval is less than or equal to the upper bound minus 1 . (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
elfzolem1 (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ≤ (𝑁 − 1))

Proof of Theorem elfzolem1
StepHypRef Expression
1 id 22 . 2 (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ (𝑀..^𝑁))
2 elfzoel2 13595 . 2 (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ)
3 simpl 482 . . . 4 ((𝐾 ∈ (𝑀..^𝑁) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ (𝑀..^𝑁))
4 fzoval 13597 . . . . 5 (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
54adantl 481 . . . 4 ((𝐾 ∈ (𝑀..^𝑁) ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
63, 5eleqtrd 2830 . . 3 ((𝐾 ∈ (𝑀..^𝑁) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ (𝑀...(𝑁 − 1)))
7 elfzle2 13465 . . 3 (𝐾 ∈ (𝑀...(𝑁 − 1)) → 𝐾 ≤ (𝑁 − 1))
86, 7syl 17 . 2 ((𝐾 ∈ (𝑀..^𝑁) ∧ 𝑁 ∈ ℤ) → 𝐾 ≤ (𝑁 − 1))
91, 2, 8syl2anc 584 1 (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ≤ (𝑁 − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5102  (class class class)co 7369  1c1 11045  cle 11185  cmin 11381  cz 12505  ...cfz 13444  ..^cfzo 13591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-neg 11384  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592
This theorem is referenced by:  elfzo0subge1  13642  iundjiun  46451
  Copyright terms: Public domain W3C validator