Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elfzolem1 | Structured version Visualization version GIF version |
Description: A member in a half-open integer interval is less than or equal to the upper bound minus 1 . (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
elfzolem1 | ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ≤ (𝑁 − 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ (𝑀..^𝑁)) | |
2 | elfzoel2 13315 | . 2 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ) | |
3 | simpl 482 | . . . 4 ⊢ ((𝐾 ∈ (𝑀..^𝑁) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ (𝑀..^𝑁)) | |
4 | fzoval 13317 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) | |
5 | 4 | adantl 481 | . . . 4 ⊢ ((𝐾 ∈ (𝑀..^𝑁) ∧ 𝑁 ∈ ℤ) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
6 | 3, 5 | eleqtrd 2841 | . . 3 ⊢ ((𝐾 ∈ (𝑀..^𝑁) ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ (𝑀...(𝑁 − 1))) |
7 | elfzle2 13189 | . . 3 ⊢ (𝐾 ∈ (𝑀...(𝑁 − 1)) → 𝐾 ≤ (𝑁 − 1)) | |
8 | 6, 7 | syl 17 | . 2 ⊢ ((𝐾 ∈ (𝑀..^𝑁) ∧ 𝑁 ∈ ℤ) → 𝐾 ≤ (𝑁 − 1)) |
9 | 1, 2, 8 | syl2anc 583 | 1 ⊢ (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ≤ (𝑁 − 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 1c1 10803 ≤ cle 10941 − cmin 11135 ℤcz 12249 ...cfz 13168 ..^cfzo 13311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-neg 11138 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 |
This theorem is referenced by: iundjiun 43888 |
Copyright terms: Public domain | W3C validator |