Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrgtned Structured version   Visualization version   GIF version

Theorem xrgtned 42323
Description: 'Greater than' implies not equal. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
xrgtned.1 (𝜑𝐴 ∈ ℝ*)
xrgtned.2 (𝜑𝐵 ∈ ℝ*)
xrgtned.3 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
xrgtned (𝜑𝐵𝐴)

Proof of Theorem xrgtned
StepHypRef Expression
1 xrgtned.1 . 2 (𝜑𝐴 ∈ ℝ*)
2 xrgtned.2 . 2 (𝜑𝐵 ∈ ℝ*)
3 xrgtned.3 . 2 (𝜑𝐴 < 𝐵)
4 xrltne 12598 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐵𝐴)
51, 2, 3, 4syl3anc 1369 1 (𝜑𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2112  wne 2952   class class class wbr 5033  *cxr 10713   < clt 10714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10632  ax-resscn 10633  ax-pre-lttri 10650  ax-pre-lttrn 10651
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-po 5444  df-so 5445  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-er 8300  df-en 8529  df-dom 8530  df-sdom 8531  df-pnf 10716  df-mnf 10717  df-xr 10718  df-ltxr 10719
This theorem is referenced by:  xrge0nemnfd  42333  xrltned  42358  infxr  42368  liminflimsupxrre  42826  ioorrnopnxrlem  43315  gsumge0cl  43377  sge0pr  43400  sge0rpcpnf  43427  sge0isum  43433
  Copyright terms: Public domain W3C validator