Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xadd0ge Structured version   Visualization version   GIF version

Theorem xadd0ge 45430
Description: A number is less than or equal to itself plus a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
xadd0ge.a (𝜑𝐴 ∈ ℝ*)
xadd0ge.b (𝜑𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
xadd0ge (𝜑𝐴 ≤ (𝐴 +𝑒 𝐵))

Proof of Theorem xadd0ge
StepHypRef Expression
1 xadd0ge.a . . . 4 (𝜑𝐴 ∈ ℝ*)
2 xaddrid 13140 . . . 4 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
31, 2syl 17 . . 3 (𝜑 → (𝐴 +𝑒 0) = 𝐴)
43eqcomd 2737 . 2 (𝜑𝐴 = (𝐴 +𝑒 0))
5 0xr 11159 . . . . . 6 0 ∈ ℝ*
65a1i 11 . . . . 5 (𝜑 → 0 ∈ ℝ*)
71, 6jca 511 . . . 4 (𝜑 → (𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*))
8 iccssxr 13330 . . . . . 6 (0[,]+∞) ⊆ ℝ*
9 xadd0ge.b . . . . . 6 (𝜑𝐵 ∈ (0[,]+∞))
108, 9sselid 3927 . . . . 5 (𝜑𝐵 ∈ ℝ*)
111, 10jca 511 . . . 4 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
127, 11jca 511 . . 3 (𝜑 → ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*)))
131xrleidd 13051 . . . 4 (𝜑𝐴𝐴)
14 pnfxr 11166 . . . . . 6 +∞ ∈ ℝ*
1514a1i 11 . . . . 5 (𝜑 → +∞ ∈ ℝ*)
16 iccgelb 13302 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,]+∞)) → 0 ≤ 𝐵)
176, 15, 9, 16syl3anc 1373 . . . 4 (𝜑 → 0 ≤ 𝐵)
1813, 17jca 511 . . 3 (𝜑 → (𝐴𝐴 ∧ 0 ≤ 𝐵))
19 xle2add 13158 . . 3 (((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*)) → ((𝐴𝐴 ∧ 0 ≤ 𝐵) → (𝐴 +𝑒 0) ≤ (𝐴 +𝑒 𝐵)))
2012, 18, 19sylc 65 . 2 (𝜑 → (𝐴 +𝑒 0) ≤ (𝐴 +𝑒 𝐵))
214, 20eqbrtrd 5111 1 (𝜑𝐴 ≤ (𝐴 +𝑒 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111   class class class wbr 5089  (class class class)co 7346  0cc0 11006  +∞cpnf 11143  *cxr 11145  cle 11147   +𝑒 cxad 13009  [,]cicc 13248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-xadd 13012  df-icc 13252
This theorem is referenced by:  xadd0ge2  45450  sge0xadd  46543  meassle  46571  ovnsubaddlem1  46678
  Copyright terms: Public domain W3C validator