| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xadd0ge | Structured version Visualization version GIF version | ||
| Description: A number is less than or equal to itself plus a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| xadd0ge.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xadd0ge.b | ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) |
| Ref | Expression |
|---|---|
| xadd0ge | ⊢ (𝜑 → 𝐴 ≤ (𝐴 +𝑒 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xadd0ge.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | xaddrid 13264 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 +𝑒 0) = 𝐴) |
| 4 | 3 | eqcomd 2740 | . 2 ⊢ (𝜑 → 𝐴 = (𝐴 +𝑒 0)) |
| 5 | 0xr 11289 | . . . . . 6 ⊢ 0 ∈ ℝ* | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℝ*) |
| 7 | 1, 6 | jca 511 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*)) |
| 8 | iccssxr 13451 | . . . . . 6 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 9 | xadd0ge.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) | |
| 10 | 8, 9 | sselid 3961 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| 11 | 1, 10 | jca 511 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
| 12 | 7, 11 | jca 511 | . . 3 ⊢ (𝜑 → ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*))) |
| 13 | 1 | xrleidd 13175 | . . . 4 ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
| 14 | pnfxr 11296 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
| 15 | 14 | a1i 11 | . . . . 5 ⊢ (𝜑 → +∞ ∈ ℝ*) |
| 16 | iccgelb 13424 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐵 ∈ (0[,]+∞)) → 0 ≤ 𝐵) | |
| 17 | 6, 15, 9, 16 | syl3anc 1372 | . . . 4 ⊢ (𝜑 → 0 ≤ 𝐵) |
| 18 | 13, 17 | jca 511 | . . 3 ⊢ (𝜑 → (𝐴 ≤ 𝐴 ∧ 0 ≤ 𝐵)) |
| 19 | xle2add 13282 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) → ((𝐴 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 +𝑒 0) ≤ (𝐴 +𝑒 𝐵))) | |
| 20 | 12, 18, 19 | sylc 65 | . 2 ⊢ (𝜑 → (𝐴 +𝑒 0) ≤ (𝐴 +𝑒 𝐵)) |
| 21 | 4, 20 | eqbrtrd 5145 | 1 ⊢ (𝜑 → 𝐴 ≤ (𝐴 +𝑒 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 class class class wbr 5123 (class class class)co 7412 0cc0 11136 +∞cpnf 11273 ℝ*cxr 11275 ≤ cle 11277 +𝑒 cxad 13133 [,]cicc 13371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7995 df-2nd 7996 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-xadd 13136 df-icc 13375 |
| This theorem is referenced by: xadd0ge2 45285 sge0xadd 46383 meassle 46411 ovnsubaddlem1 46518 |
| Copyright terms: Public domain | W3C validator |