Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xadd0ge Structured version   Visualization version   GIF version

Theorem xadd0ge 44030
Description: A number is less than or equal to itself plus a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
xadd0ge.a (𝜑𝐴 ∈ ℝ*)
xadd0ge.b (𝜑𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
xadd0ge (𝜑𝐴 ≤ (𝐴 +𝑒 𝐵))

Proof of Theorem xadd0ge
StepHypRef Expression
1 xadd0ge.a . . . 4 (𝜑𝐴 ∈ ℝ*)
2 xaddrid 13220 . . . 4 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
31, 2syl 17 . . 3 (𝜑 → (𝐴 +𝑒 0) = 𝐴)
43eqcomd 2739 . 2 (𝜑𝐴 = (𝐴 +𝑒 0))
5 0xr 11261 . . . . . 6 0 ∈ ℝ*
65a1i 11 . . . . 5 (𝜑 → 0 ∈ ℝ*)
71, 6jca 513 . . . 4 (𝜑 → (𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*))
8 iccssxr 13407 . . . . . 6 (0[,]+∞) ⊆ ℝ*
9 xadd0ge.b . . . . . 6 (𝜑𝐵 ∈ (0[,]+∞))
108, 9sselid 3981 . . . . 5 (𝜑𝐵 ∈ ℝ*)
111, 10jca 513 . . . 4 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
127, 11jca 513 . . 3 (𝜑 → ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*)))
131xrleidd 13131 . . . 4 (𝜑𝐴𝐴)
14 pnfxr 11268 . . . . . 6 +∞ ∈ ℝ*
1514a1i 11 . . . . 5 (𝜑 → +∞ ∈ ℝ*)
16 iccgelb 13380 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,]+∞)) → 0 ≤ 𝐵)
176, 15, 9, 16syl3anc 1372 . . . 4 (𝜑 → 0 ≤ 𝐵)
1813, 17jca 513 . . 3 (𝜑 → (𝐴𝐴 ∧ 0 ≤ 𝐵))
19 xle2add 13238 . . 3 (((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*)) → ((𝐴𝐴 ∧ 0 ≤ 𝐵) → (𝐴 +𝑒 0) ≤ (𝐴 +𝑒 𝐵)))
2012, 18, 19sylc 65 . 2 (𝜑 → (𝐴 +𝑒 0) ≤ (𝐴 +𝑒 𝐵))
214, 20eqbrtrd 5171 1 (𝜑𝐴 ≤ (𝐴 +𝑒 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107   class class class wbr 5149  (class class class)co 7409  0cc0 11110  +∞cpnf 11245  *cxr 11247  cle 11249   +𝑒 cxad 13090  [,]cicc 13327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-xadd 13093  df-icc 13331
This theorem is referenced by:  xadd0ge2  44051  sge0xadd  45151  meassle  45179  ovnsubaddlem1  45286
  Copyright terms: Public domain W3C validator