![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xadd0ge | Structured version Visualization version GIF version |
Description: A number is less than or equal to itself plus a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
xadd0ge.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xadd0ge.b | ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) |
Ref | Expression |
---|---|
xadd0ge | ⊢ (𝜑 → 𝐴 ≤ (𝐴 +𝑒 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xadd0ge.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | xaddrid 13289 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 +𝑒 0) = 𝐴) |
4 | 3 | eqcomd 2743 | . 2 ⊢ (𝜑 → 𝐴 = (𝐴 +𝑒 0)) |
5 | 0xr 11315 | . . . . . 6 ⊢ 0 ∈ ℝ* | |
6 | 5 | a1i 11 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℝ*) |
7 | 1, 6 | jca 511 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*)) |
8 | iccssxr 13476 | . . . . . 6 ⊢ (0[,]+∞) ⊆ ℝ* | |
9 | xadd0ge.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) | |
10 | 8, 9 | sselid 3996 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
11 | 1, 10 | jca 511 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
12 | 7, 11 | jca 511 | . . 3 ⊢ (𝜑 → ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*))) |
13 | 1 | xrleidd 13200 | . . . 4 ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
14 | pnfxr 11322 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
15 | 14 | a1i 11 | . . . . 5 ⊢ (𝜑 → +∞ ∈ ℝ*) |
16 | iccgelb 13449 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐵 ∈ (0[,]+∞)) → 0 ≤ 𝐵) | |
17 | 6, 15, 9, 16 | syl3anc 1372 | . . . 4 ⊢ (𝜑 → 0 ≤ 𝐵) |
18 | 13, 17 | jca 511 | . . 3 ⊢ (𝜑 → (𝐴 ≤ 𝐴 ∧ 0 ≤ 𝐵)) |
19 | xle2add 13307 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) → ((𝐴 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 +𝑒 0) ≤ (𝐴 +𝑒 𝐵))) | |
20 | 12, 18, 19 | sylc 65 | . 2 ⊢ (𝜑 → (𝐴 +𝑒 0) ≤ (𝐴 +𝑒 𝐵)) |
21 | 4, 20 | eqbrtrd 5173 | 1 ⊢ (𝜑 → 𝐴 ≤ (𝐴 +𝑒 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5151 (class class class)co 7438 0cc0 11162 +∞cpnf 11299 ℝ*cxr 11301 ≤ cle 11303 +𝑒 cxad 13159 [,]cicc 13396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-po 5601 df-so 5602 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-xadd 13162 df-icc 13400 |
This theorem is referenced by: xadd0ge2 45320 sge0xadd 46419 meassle 46447 ovnsubaddlem1 46554 |
Copyright terms: Public domain | W3C validator |