![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xadd0ge | Structured version Visualization version GIF version |
Description: A number is less than or equal to itself plus a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
xadd0ge.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xadd0ge.b | ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) |
Ref | Expression |
---|---|
xadd0ge | ⊢ (𝜑 → 𝐴 ≤ (𝐴 +𝑒 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xadd0ge.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | xaddrid 13202 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 +𝑒 0) = 𝐴) |
4 | 3 | eqcomd 2737 | . 2 ⊢ (𝜑 → 𝐴 = (𝐴 +𝑒 0)) |
5 | 0xr 11243 | . . . . . 6 ⊢ 0 ∈ ℝ* | |
6 | 5 | a1i 11 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℝ*) |
7 | 1, 6 | jca 512 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*)) |
8 | iccssxr 13389 | . . . . . 6 ⊢ (0[,]+∞) ⊆ ℝ* | |
9 | xadd0ge.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) | |
10 | 8, 9 | sselid 3976 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
11 | 1, 10 | jca 512 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
12 | 7, 11 | jca 512 | . . 3 ⊢ (𝜑 → ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*))) |
13 | 1 | xrleidd 13113 | . . . 4 ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
14 | pnfxr 11250 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
15 | 14 | a1i 11 | . . . . 5 ⊢ (𝜑 → +∞ ∈ ℝ*) |
16 | iccgelb 13362 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐵 ∈ (0[,]+∞)) → 0 ≤ 𝐵) | |
17 | 6, 15, 9, 16 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → 0 ≤ 𝐵) |
18 | 13, 17 | jca 512 | . . 3 ⊢ (𝜑 → (𝐴 ≤ 𝐴 ∧ 0 ≤ 𝐵)) |
19 | xle2add 13220 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) → ((𝐴 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 +𝑒 0) ≤ (𝐴 +𝑒 𝐵))) | |
20 | 12, 18, 19 | sylc 65 | . 2 ⊢ (𝜑 → (𝐴 +𝑒 0) ≤ (𝐴 +𝑒 𝐵)) |
21 | 4, 20 | eqbrtrd 5163 | 1 ⊢ (𝜑 → 𝐴 ≤ (𝐴 +𝑒 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 class class class wbr 5141 (class class class)co 7393 0cc0 11092 +∞cpnf 11227 ℝ*cxr 11229 ≤ cle 11231 +𝑒 cxad 13072 [,]cicc 13309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-ov 7396 df-oprab 7397 df-mpo 7398 df-1st 7957 df-2nd 7958 df-er 8686 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-xadd 13075 df-icc 13313 |
This theorem is referenced by: xadd0ge2 43824 sge0xadd 44924 meassle 44952 ovnsubaddlem1 45059 |
Copyright terms: Public domain | W3C validator |