![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hmopadj2 | Structured version Visualization version GIF version |
Description: An operator is Hermitian iff it is self-adjoint. Definition of Hermitian in [Halmos] p. 41. (Contributed by NM, 9-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hmopadj2 | ⊢ (𝑇 ∈ dom adjℎ → (𝑇 ∈ HrmOp ↔ (adjℎ‘𝑇) = 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmopadj 31971 | . 2 ⊢ (𝑇 ∈ HrmOp → (adjℎ‘𝑇) = 𝑇) | |
2 | dmadjop 31920 | . . . . 5 ⊢ (𝑇 ∈ dom adjℎ → 𝑇: ℋ⟶ ℋ) | |
3 | 2 | adantr 480 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ (adjℎ‘𝑇) = 𝑇) → 𝑇: ℋ⟶ ℋ) |
4 | adj1 31965 | . . . . . . . 8 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇‘𝑦)) = (((adjℎ‘𝑇)‘𝑥) ·ih 𝑦)) | |
5 | 4 | 3expb 1120 | . . . . . . 7 ⊢ ((𝑇 ∈ dom adjℎ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇‘𝑦)) = (((adjℎ‘𝑇)‘𝑥) ·ih 𝑦)) |
6 | 5 | adantlr 714 | . . . . . 6 ⊢ (((𝑇 ∈ dom adjℎ ∧ (adjℎ‘𝑇) = 𝑇) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇‘𝑦)) = (((adjℎ‘𝑇)‘𝑥) ·ih 𝑦)) |
7 | fveq1 6919 | . . . . . . . 8 ⊢ ((adjℎ‘𝑇) = 𝑇 → ((adjℎ‘𝑇)‘𝑥) = (𝑇‘𝑥)) | |
8 | 7 | oveq1d 7463 | . . . . . . 7 ⊢ ((adjℎ‘𝑇) = 𝑇 → (((adjℎ‘𝑇)‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦)) |
9 | 8 | ad2antlr 726 | . . . . . 6 ⊢ (((𝑇 ∈ dom adjℎ ∧ (adjℎ‘𝑇) = 𝑇) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((adjℎ‘𝑇)‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦)) |
10 | 6, 9 | eqtrd 2780 | . . . . 5 ⊢ (((𝑇 ∈ dom adjℎ ∧ (adjℎ‘𝑇) = 𝑇) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦)) |
11 | 10 | ralrimivva 3208 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ (adjℎ‘𝑇) = 𝑇) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦)) |
12 | elhmop 31905 | . . . 4 ⊢ (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦))) | |
13 | 3, 11, 12 | sylanbrc 582 | . . 3 ⊢ ((𝑇 ∈ dom adjℎ ∧ (adjℎ‘𝑇) = 𝑇) → 𝑇 ∈ HrmOp) |
14 | 13 | ex 412 | . 2 ⊢ (𝑇 ∈ dom adjℎ → ((adjℎ‘𝑇) = 𝑇 → 𝑇 ∈ HrmOp)) |
15 | 1, 14 | impbid2 226 | 1 ⊢ (𝑇 ∈ dom adjℎ → (𝑇 ∈ HrmOp ↔ (adjℎ‘𝑇) = 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 dom cdm 5700 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℋchba 30951 ·ih csp 30954 HrmOpcho 30982 adjℎcado 30987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-hilex 31031 ax-hfvadd 31032 ax-hvcom 31033 ax-hvass 31034 ax-hv0cl 31035 ax-hvaddid 31036 ax-hfvmul 31037 ax-hvmulid 31038 ax-hvdistr2 31041 ax-hvmul0 31042 ax-hfi 31111 ax-his1 31114 ax-his2 31115 ax-his3 31116 ax-his4 31117 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-2 12356 df-cj 15148 df-re 15149 df-im 15150 df-hvsub 31003 df-hmop 31876 df-adjh 31881 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |