Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hmopadj2 | Structured version Visualization version GIF version |
Description: An operator is Hermitian iff it is self-adjoint. Definition of Hermitian in [Halmos] p. 41. (Contributed by NM, 9-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hmopadj2 | ⊢ (𝑇 ∈ dom adjℎ → (𝑇 ∈ HrmOp ↔ (adjℎ‘𝑇) = 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmopadj 30202 | . 2 ⊢ (𝑇 ∈ HrmOp → (adjℎ‘𝑇) = 𝑇) | |
2 | dmadjop 30151 | . . . . 5 ⊢ (𝑇 ∈ dom adjℎ → 𝑇: ℋ⟶ ℋ) | |
3 | 2 | adantr 480 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ (adjℎ‘𝑇) = 𝑇) → 𝑇: ℋ⟶ ℋ) |
4 | adj1 30196 | . . . . . . . 8 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇‘𝑦)) = (((adjℎ‘𝑇)‘𝑥) ·ih 𝑦)) | |
5 | 4 | 3expb 1118 | . . . . . . 7 ⊢ ((𝑇 ∈ dom adjℎ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇‘𝑦)) = (((adjℎ‘𝑇)‘𝑥) ·ih 𝑦)) |
6 | 5 | adantlr 711 | . . . . . 6 ⊢ (((𝑇 ∈ dom adjℎ ∧ (adjℎ‘𝑇) = 𝑇) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇‘𝑦)) = (((adjℎ‘𝑇)‘𝑥) ·ih 𝑦)) |
7 | fveq1 6755 | . . . . . . . 8 ⊢ ((adjℎ‘𝑇) = 𝑇 → ((adjℎ‘𝑇)‘𝑥) = (𝑇‘𝑥)) | |
8 | 7 | oveq1d 7270 | . . . . . . 7 ⊢ ((adjℎ‘𝑇) = 𝑇 → (((adjℎ‘𝑇)‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦)) |
9 | 8 | ad2antlr 723 | . . . . . 6 ⊢ (((𝑇 ∈ dom adjℎ ∧ (adjℎ‘𝑇) = 𝑇) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((adjℎ‘𝑇)‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦)) |
10 | 6, 9 | eqtrd 2778 | . . . . 5 ⊢ (((𝑇 ∈ dom adjℎ ∧ (adjℎ‘𝑇) = 𝑇) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦)) |
11 | 10 | ralrimivva 3114 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ (adjℎ‘𝑇) = 𝑇) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦)) |
12 | elhmop 30136 | . . . 4 ⊢ (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦))) | |
13 | 3, 11, 12 | sylanbrc 582 | . . 3 ⊢ ((𝑇 ∈ dom adjℎ ∧ (adjℎ‘𝑇) = 𝑇) → 𝑇 ∈ HrmOp) |
14 | 13 | ex 412 | . 2 ⊢ (𝑇 ∈ dom adjℎ → ((adjℎ‘𝑇) = 𝑇 → 𝑇 ∈ HrmOp)) |
15 | 1, 14 | impbid2 225 | 1 ⊢ (𝑇 ∈ dom adjℎ → (𝑇 ∈ HrmOp ↔ (adjℎ‘𝑇) = 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 dom cdm 5580 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℋchba 29182 ·ih csp 29185 HrmOpcho 29213 adjℎcado 29218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-hilex 29262 ax-hfvadd 29263 ax-hvcom 29264 ax-hvass 29265 ax-hv0cl 29266 ax-hvaddid 29267 ax-hfvmul 29268 ax-hvmulid 29269 ax-hvdistr2 29272 ax-hvmul0 29273 ax-hfi 29342 ax-his1 29345 ax-his2 29346 ax-his3 29347 ax-his4 29348 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-2 11966 df-cj 14738 df-re 14739 df-im 14740 df-hvsub 29234 df-hmop 30107 df-adjh 30112 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |