HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmopadj2 Structured version   Visualization version   GIF version

Theorem hmopadj2 29728
Description: An operator is Hermitian iff it is self-adjoint. Definition of Hermitian in [Halmos] p. 41. (Contributed by NM, 9-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmopadj2 (𝑇 ∈ dom adj → (𝑇 ∈ HrmOp ↔ (adj𝑇) = 𝑇))

Proof of Theorem hmopadj2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmopadj 29726 . 2 (𝑇 ∈ HrmOp → (adj𝑇) = 𝑇)
2 dmadjop 29675 . . . . 5 (𝑇 ∈ dom adj𝑇: ℋ⟶ ℋ)
32adantr 484 . . . 4 ((𝑇 ∈ dom adj ∧ (adj𝑇) = 𝑇) → 𝑇: ℋ⟶ ℋ)
4 adj1 29720 . . . . . . . 8 ((𝑇 ∈ dom adj𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦))
543expb 1117 . . . . . . 7 ((𝑇 ∈ dom adj ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦))
65adantlr 714 . . . . . 6 (((𝑇 ∈ dom adj ∧ (adj𝑇) = 𝑇) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇𝑦)) = (((adj𝑇)‘𝑥) ·ih 𝑦))
7 fveq1 6648 . . . . . . . 8 ((adj𝑇) = 𝑇 → ((adj𝑇)‘𝑥) = (𝑇𝑥))
87oveq1d 7154 . . . . . . 7 ((adj𝑇) = 𝑇 → (((adj𝑇)‘𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦))
98ad2antlr 726 . . . . . 6 (((𝑇 ∈ dom adj ∧ (adj𝑇) = 𝑇) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((adj𝑇)‘𝑥) ·ih 𝑦) = ((𝑇𝑥) ·ih 𝑦))
106, 9eqtrd 2836 . . . . 5 (((𝑇 ∈ dom adj ∧ (adj𝑇) = 𝑇) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦))
1110ralrimivva 3159 . . . 4 ((𝑇 ∈ dom adj ∧ (adj𝑇) = 𝑇) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦))
12 elhmop 29660 . . . 4 (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦)))
133, 11, 12sylanbrc 586 . . 3 ((𝑇 ∈ dom adj ∧ (adj𝑇) = 𝑇) → 𝑇 ∈ HrmOp)
1413ex 416 . 2 (𝑇 ∈ dom adj → ((adj𝑇) = 𝑇𝑇 ∈ HrmOp))
151, 14impbid2 229 1 (𝑇 ∈ dom adj → (𝑇 ∈ HrmOp ↔ (adj𝑇) = 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  wral 3109  dom cdm 5523  wf 6324  cfv 6328  (class class class)co 7139  chba 28706   ·ih csp 28709  HrmOpcho 28737  adjcado 28742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-hilex 28786  ax-hfvadd 28787  ax-hvcom 28788  ax-hvass 28789  ax-hv0cl 28790  ax-hvaddid 28791  ax-hfvmul 28792  ax-hvmulid 28793  ax-hvdistr2 28796  ax-hvmul0 28797  ax-hfi 28866  ax-his1 28869  ax-his2 28870  ax-his3 28871  ax-his4 28872
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-po 5442  df-so 5443  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-2 11692  df-cj 14454  df-re 14455  df-im 14456  df-hvsub 28758  df-hmop 29631  df-adjh 29636
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator