| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hmopadj2 | Structured version Visualization version GIF version | ||
| Description: An operator is Hermitian iff it is self-adjoint. Definition of Hermitian in [Halmos] p. 41. (Contributed by NM, 9-Apr-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hmopadj2 | ⊢ (𝑇 ∈ dom adjℎ → (𝑇 ∈ HrmOp ↔ (adjℎ‘𝑇) = 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmopadj 31925 | . 2 ⊢ (𝑇 ∈ HrmOp → (adjℎ‘𝑇) = 𝑇) | |
| 2 | dmadjop 31874 | . . . . 5 ⊢ (𝑇 ∈ dom adjℎ → 𝑇: ℋ⟶ ℋ) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ (adjℎ‘𝑇) = 𝑇) → 𝑇: ℋ⟶ ℋ) |
| 4 | adj1 31919 | . . . . . . . 8 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇‘𝑦)) = (((adjℎ‘𝑇)‘𝑥) ·ih 𝑦)) | |
| 5 | 4 | 3expb 1120 | . . . . . . 7 ⊢ ((𝑇 ∈ dom adjℎ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇‘𝑦)) = (((adjℎ‘𝑇)‘𝑥) ·ih 𝑦)) |
| 6 | 5 | adantlr 715 | . . . . . 6 ⊢ (((𝑇 ∈ dom adjℎ ∧ (adjℎ‘𝑇) = 𝑇) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇‘𝑦)) = (((adjℎ‘𝑇)‘𝑥) ·ih 𝑦)) |
| 7 | fveq1 6880 | . . . . . . . 8 ⊢ ((adjℎ‘𝑇) = 𝑇 → ((adjℎ‘𝑇)‘𝑥) = (𝑇‘𝑥)) | |
| 8 | 7 | oveq1d 7425 | . . . . . . 7 ⊢ ((adjℎ‘𝑇) = 𝑇 → (((adjℎ‘𝑇)‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦)) |
| 9 | 8 | ad2antlr 727 | . . . . . 6 ⊢ (((𝑇 ∈ dom adjℎ ∧ (adjℎ‘𝑇) = 𝑇) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((adjℎ‘𝑇)‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦)) |
| 10 | 6, 9 | eqtrd 2771 | . . . . 5 ⊢ (((𝑇 ∈ dom adjℎ ∧ (adjℎ‘𝑇) = 𝑇) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦)) |
| 11 | 10 | ralrimivva 3188 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ (adjℎ‘𝑇) = 𝑇) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦)) |
| 12 | elhmop 31859 | . . . 4 ⊢ (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦))) | |
| 13 | 3, 11, 12 | sylanbrc 583 | . . 3 ⊢ ((𝑇 ∈ dom adjℎ ∧ (adjℎ‘𝑇) = 𝑇) → 𝑇 ∈ HrmOp) |
| 14 | 13 | ex 412 | . 2 ⊢ (𝑇 ∈ dom adjℎ → ((adjℎ‘𝑇) = 𝑇 → 𝑇 ∈ HrmOp)) |
| 15 | 1, 14 | impbid2 226 | 1 ⊢ (𝑇 ∈ dom adjℎ → (𝑇 ∈ HrmOp ↔ (adjℎ‘𝑇) = 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 dom cdm 5659 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ℋchba 30905 ·ih csp 30908 HrmOpcho 30936 adjℎcado 30941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-hilex 30985 ax-hfvadd 30986 ax-hvcom 30987 ax-hvass 30988 ax-hv0cl 30989 ax-hvaddid 30990 ax-hfvmul 30991 ax-hvmulid 30992 ax-hvdistr2 30995 ax-hvmul0 30996 ax-hfi 31065 ax-his1 31068 ax-his2 31069 ax-his3 31070 ax-his4 31071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-cj 15123 df-re 15124 df-im 15125 df-hvsub 30957 df-hmop 31830 df-adjh 31835 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |