![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hmopadj2 | Structured version Visualization version GIF version |
Description: An operator is Hermitian iff it is self-adjoint. Definition of Hermitian in [Halmos] p. 41. (Contributed by NM, 9-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hmopadj2 | ⊢ (𝑇 ∈ dom adjℎ → (𝑇 ∈ HrmOp ↔ (adjℎ‘𝑇) = 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmopadj 31866 | . 2 ⊢ (𝑇 ∈ HrmOp → (adjℎ‘𝑇) = 𝑇) | |
2 | dmadjop 31815 | . . . . 5 ⊢ (𝑇 ∈ dom adjℎ → 𝑇: ℋ⟶ ℋ) | |
3 | 2 | adantr 479 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ (adjℎ‘𝑇) = 𝑇) → 𝑇: ℋ⟶ ℋ) |
4 | adj1 31860 | . . . . . . . 8 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih (𝑇‘𝑦)) = (((adjℎ‘𝑇)‘𝑥) ·ih 𝑦)) | |
5 | 4 | 3expb 1117 | . . . . . . 7 ⊢ ((𝑇 ∈ dom adjℎ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇‘𝑦)) = (((adjℎ‘𝑇)‘𝑥) ·ih 𝑦)) |
6 | 5 | adantlr 713 | . . . . . 6 ⊢ (((𝑇 ∈ dom adjℎ ∧ (adjℎ‘𝑇) = 𝑇) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇‘𝑦)) = (((adjℎ‘𝑇)‘𝑥) ·ih 𝑦)) |
7 | fveq1 6889 | . . . . . . . 8 ⊢ ((adjℎ‘𝑇) = 𝑇 → ((adjℎ‘𝑇)‘𝑥) = (𝑇‘𝑥)) | |
8 | 7 | oveq1d 7428 | . . . . . . 7 ⊢ ((adjℎ‘𝑇) = 𝑇 → (((adjℎ‘𝑇)‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦)) |
9 | 8 | ad2antlr 725 | . . . . . 6 ⊢ (((𝑇 ∈ dom adjℎ ∧ (adjℎ‘𝑇) = 𝑇) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((adjℎ‘𝑇)‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦)) |
10 | 6, 9 | eqtrd 2766 | . . . . 5 ⊢ (((𝑇 ∈ dom adjℎ ∧ (adjℎ‘𝑇) = 𝑇) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦)) |
11 | 10 | ralrimivva 3191 | . . . 4 ⊢ ((𝑇 ∈ dom adjℎ ∧ (adjℎ‘𝑇) = 𝑇) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦)) |
12 | elhmop 31800 | . . . 4 ⊢ (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦))) | |
13 | 3, 11, 12 | sylanbrc 581 | . . 3 ⊢ ((𝑇 ∈ dom adjℎ ∧ (adjℎ‘𝑇) = 𝑇) → 𝑇 ∈ HrmOp) |
14 | 13 | ex 411 | . 2 ⊢ (𝑇 ∈ dom adjℎ → ((adjℎ‘𝑇) = 𝑇 → 𝑇 ∈ HrmOp)) |
15 | 1, 14 | impbid2 225 | 1 ⊢ (𝑇 ∈ dom adjℎ → (𝑇 ∈ HrmOp ↔ (adjℎ‘𝑇) = 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 dom cdm 5672 ⟶wf 6539 ‘cfv 6543 (class class class)co 7413 ℋchba 30846 ·ih csp 30849 HrmOpcho 30877 adjℎcado 30882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7735 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-hilex 30926 ax-hfvadd 30927 ax-hvcom 30928 ax-hvass 30929 ax-hv0cl 30930 ax-hvaddid 30931 ax-hfvmul 30932 ax-hvmulid 30933 ax-hvdistr2 30936 ax-hvmul0 30937 ax-hfi 31006 ax-his1 31009 ax-his2 31010 ax-his3 31011 ax-his4 31012 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8723 df-map 8846 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-2 12318 df-cj 15096 df-re 15097 df-im 15098 df-hvsub 30898 df-hmop 31771 df-adjh 31776 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |