HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmopco Structured version   Visualization version   GIF version

Theorem hmopco 30965
Description: The composition of two commuting Hermitian operators is Hermitian. (Contributed by NM, 22-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmopco ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ (𝑇𝑈) = (𝑈𝑇)) → (𝑇𝑈) ∈ HrmOp)

Proof of Theorem hmopco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmopf 30816 . . . 4 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
2 hmopf 30816 . . . 4 (𝑈 ∈ HrmOp → 𝑈: ℋ⟶ ℋ)
3 fco 6692 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑇𝑈): ℋ⟶ ℋ)
41, 2, 3syl2an 596 . . 3 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇𝑈): ℋ⟶ ℋ)
543adant3 1132 . 2 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ (𝑇𝑈) = (𝑈𝑇)) → (𝑇𝑈): ℋ⟶ ℋ)
6 fvco3 6940 . . . . . . . . . 10 ((𝑈: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑈)‘𝑦) = (𝑇‘(𝑈𝑦)))
72, 6sylan 580 . . . . . . . . 9 ((𝑈 ∈ HrmOp ∧ 𝑦 ∈ ℋ) → ((𝑇𝑈)‘𝑦) = (𝑇‘(𝑈𝑦)))
87oveq2d 7373 . . . . . . . 8 ((𝑈 ∈ HrmOp ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih ((𝑇𝑈)‘𝑦)) = (𝑥 ·ih (𝑇‘(𝑈𝑦))))
98ad2ant2l 744 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇𝑈)‘𝑦)) = (𝑥 ·ih (𝑇‘(𝑈𝑦))))
10 simpll 765 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑇 ∈ HrmOp)
11 simprl 769 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑥 ∈ ℋ)
122ffvelcdmda 7035 . . . . . . . . 9 ((𝑈 ∈ HrmOp ∧ 𝑦 ∈ ℋ) → (𝑈𝑦) ∈ ℋ)
1312ad2ant2l 744 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑈𝑦) ∈ ℋ)
14 hmop 30864 . . . . . . . 8 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ (𝑈𝑦) ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑈𝑦))) = ((𝑇𝑥) ·ih (𝑈𝑦)))
1510, 11, 13, 14syl3anc 1371 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇‘(𝑈𝑦))) = ((𝑇𝑥) ·ih (𝑈𝑦)))
16 simplr 767 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑈 ∈ HrmOp)
171ffvelcdmda 7035 . . . . . . . . 9 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
1817ad2ant2r 745 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑥) ∈ ℋ)
19 simprr 771 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑦 ∈ ℋ)
20 hmop 30864 . . . . . . . 8 ((𝑈 ∈ HrmOp ∧ (𝑇𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih (𝑈𝑦)) = ((𝑈‘(𝑇𝑥)) ·ih 𝑦))
2116, 18, 19, 20syl3anc 1371 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih (𝑈𝑦)) = ((𝑈‘(𝑇𝑥)) ·ih 𝑦))
229, 15, 213eqtrd 2780 . . . . . 6 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇𝑈)‘𝑦)) = ((𝑈‘(𝑇𝑥)) ·ih 𝑦))
23 fvco3 6940 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑈𝑇)‘𝑥) = (𝑈‘(𝑇𝑥)))
241, 23sylan 580 . . . . . . . 8 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑈𝑇)‘𝑥) = (𝑈‘(𝑇𝑥)))
2524oveq1d 7372 . . . . . . 7 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → (((𝑈𝑇)‘𝑥) ·ih 𝑦) = ((𝑈‘(𝑇𝑥)) ·ih 𝑦))
2625ad2ant2r 745 . . . . . 6 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑈𝑇)‘𝑥) ·ih 𝑦) = ((𝑈‘(𝑇𝑥)) ·ih 𝑦))
2722, 26eqtr4d 2779 . . . . 5 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇𝑈)‘𝑦)) = (((𝑈𝑇)‘𝑥) ·ih 𝑦))
28273adantl3 1168 . . . 4 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ (𝑇𝑈) = (𝑈𝑇)) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇𝑈)‘𝑦)) = (((𝑈𝑇)‘𝑥) ·ih 𝑦))
29 fveq1 6841 . . . . . . 7 ((𝑇𝑈) = (𝑈𝑇) → ((𝑇𝑈)‘𝑥) = ((𝑈𝑇)‘𝑥))
3029oveq1d 7372 . . . . . 6 ((𝑇𝑈) = (𝑈𝑇) → (((𝑇𝑈)‘𝑥) ·ih 𝑦) = (((𝑈𝑇)‘𝑥) ·ih 𝑦))
31303ad2ant3 1135 . . . . 5 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ (𝑇𝑈) = (𝑈𝑇)) → (((𝑇𝑈)‘𝑥) ·ih 𝑦) = (((𝑈𝑇)‘𝑥) ·ih 𝑦))
3231adantr 481 . . . 4 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ (𝑇𝑈) = (𝑈𝑇)) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑇𝑈)‘𝑥) ·ih 𝑦) = (((𝑈𝑇)‘𝑥) ·ih 𝑦))
3328, 32eqtr4d 2779 . . 3 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ (𝑇𝑈) = (𝑈𝑇)) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇𝑈)‘𝑦)) = (((𝑇𝑈)‘𝑥) ·ih 𝑦))
3433ralrimivva 3197 . 2 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ (𝑇𝑈) = (𝑈𝑇)) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((𝑇𝑈)‘𝑦)) = (((𝑇𝑈)‘𝑥) ·ih 𝑦))
35 elhmop 30815 . 2 ((𝑇𝑈) ∈ HrmOp ↔ ((𝑇𝑈): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((𝑇𝑈)‘𝑦)) = (((𝑇𝑈)‘𝑥) ·ih 𝑦)))
365, 34, 35sylanbrc 583 1 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ (𝑇𝑈) = (𝑈𝑇)) → (𝑇𝑈) ∈ HrmOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  chba 29861   ·ih csp 29864  HrmOpcho 29892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-hilex 29941
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-map 8767  df-hmop 30786
This theorem is referenced by:  leopsq  31071  opsqrlem4  31085  opsqrlem6  31087
  Copyright terms: Public domain W3C validator