HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmopco Structured version   Visualization version   GIF version

Theorem hmopco 29338
Description: The composition of two commuting Hermitian operators is Hermitian. (Contributed by NM, 22-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmopco ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ (𝑇𝑈) = (𝑈𝑇)) → (𝑇𝑈) ∈ HrmOp)

Proof of Theorem hmopco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmopf 29189 . . . 4 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
2 hmopf 29189 . . . 4 (𝑈 ∈ HrmOp → 𝑈: ℋ⟶ ℋ)
3 fco 6240 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑇𝑈): ℋ⟶ ℋ)
41, 2, 3syl2an 589 . . 3 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇𝑈): ℋ⟶ ℋ)
543adant3 1162 . 2 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ (𝑇𝑈) = (𝑈𝑇)) → (𝑇𝑈): ℋ⟶ ℋ)
6 fvco3 6464 . . . . . . . . . 10 ((𝑈: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑈)‘𝑦) = (𝑇‘(𝑈𝑦)))
72, 6sylan 575 . . . . . . . . 9 ((𝑈 ∈ HrmOp ∧ 𝑦 ∈ ℋ) → ((𝑇𝑈)‘𝑦) = (𝑇‘(𝑈𝑦)))
87oveq2d 6858 . . . . . . . 8 ((𝑈 ∈ HrmOp ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih ((𝑇𝑈)‘𝑦)) = (𝑥 ·ih (𝑇‘(𝑈𝑦))))
98ad2ant2l 752 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇𝑈)‘𝑦)) = (𝑥 ·ih (𝑇‘(𝑈𝑦))))
10 simpll 783 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑇 ∈ HrmOp)
11 simprl 787 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑥 ∈ ℋ)
122ffvelrnda 6549 . . . . . . . . 9 ((𝑈 ∈ HrmOp ∧ 𝑦 ∈ ℋ) → (𝑈𝑦) ∈ ℋ)
1312ad2ant2l 752 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑈𝑦) ∈ ℋ)
14 hmop 29237 . . . . . . . 8 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ (𝑈𝑦) ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑈𝑦))) = ((𝑇𝑥) ·ih (𝑈𝑦)))
1510, 11, 13, 14syl3anc 1490 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇‘(𝑈𝑦))) = ((𝑇𝑥) ·ih (𝑈𝑦)))
16 simplr 785 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑈 ∈ HrmOp)
171ffvelrnda 6549 . . . . . . . . 9 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
1817ad2ant2r 753 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑥) ∈ ℋ)
19 simprr 789 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑦 ∈ ℋ)
20 hmop 29237 . . . . . . . 8 ((𝑈 ∈ HrmOp ∧ (𝑇𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih (𝑈𝑦)) = ((𝑈‘(𝑇𝑥)) ·ih 𝑦))
2116, 18, 19, 20syl3anc 1490 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih (𝑈𝑦)) = ((𝑈‘(𝑇𝑥)) ·ih 𝑦))
229, 15, 213eqtrd 2803 . . . . . 6 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇𝑈)‘𝑦)) = ((𝑈‘(𝑇𝑥)) ·ih 𝑦))
23 fvco3 6464 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑈𝑇)‘𝑥) = (𝑈‘(𝑇𝑥)))
241, 23sylan 575 . . . . . . . 8 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑈𝑇)‘𝑥) = (𝑈‘(𝑇𝑥)))
2524oveq1d 6857 . . . . . . 7 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → (((𝑈𝑇)‘𝑥) ·ih 𝑦) = ((𝑈‘(𝑇𝑥)) ·ih 𝑦))
2625ad2ant2r 753 . . . . . 6 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑈𝑇)‘𝑥) ·ih 𝑦) = ((𝑈‘(𝑇𝑥)) ·ih 𝑦))
2722, 26eqtr4d 2802 . . . . 5 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇𝑈)‘𝑦)) = (((𝑈𝑇)‘𝑥) ·ih 𝑦))
28273adantl3 1209 . . . 4 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ (𝑇𝑈) = (𝑈𝑇)) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇𝑈)‘𝑦)) = (((𝑈𝑇)‘𝑥) ·ih 𝑦))
29 fveq1 6374 . . . . . . 7 ((𝑇𝑈) = (𝑈𝑇) → ((𝑇𝑈)‘𝑥) = ((𝑈𝑇)‘𝑥))
3029oveq1d 6857 . . . . . 6 ((𝑇𝑈) = (𝑈𝑇) → (((𝑇𝑈)‘𝑥) ·ih 𝑦) = (((𝑈𝑇)‘𝑥) ·ih 𝑦))
31303ad2ant3 1165 . . . . 5 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ (𝑇𝑈) = (𝑈𝑇)) → (((𝑇𝑈)‘𝑥) ·ih 𝑦) = (((𝑈𝑇)‘𝑥) ·ih 𝑦))
3231adantr 472 . . . 4 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ (𝑇𝑈) = (𝑈𝑇)) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑇𝑈)‘𝑥) ·ih 𝑦) = (((𝑈𝑇)‘𝑥) ·ih 𝑦))
3328, 32eqtr4d 2802 . . 3 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ (𝑇𝑈) = (𝑈𝑇)) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇𝑈)‘𝑦)) = (((𝑇𝑈)‘𝑥) ·ih 𝑦))
3433ralrimivva 3118 . 2 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ (𝑇𝑈) = (𝑈𝑇)) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((𝑇𝑈)‘𝑦)) = (((𝑇𝑈)‘𝑥) ·ih 𝑦))
35 elhmop 29188 . 2 ((𝑇𝑈) ∈ HrmOp ↔ ((𝑇𝑈): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((𝑇𝑈)‘𝑦)) = (((𝑇𝑈)‘𝑥) ·ih 𝑦)))
365, 34, 35sylanbrc 578 1 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ (𝑇𝑈) = (𝑈𝑇)) → (𝑇𝑈) ∈ HrmOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  wral 3055  ccom 5281  wf 6064  cfv 6068  (class class class)co 6842  chba 28232   ·ih csp 28235  HrmOpcho 28263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-hilex 28312
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-br 4810  df-opab 4872  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-map 8062  df-hmop 29159
This theorem is referenced by:  leopsq  29444  opsqrlem4  29458  opsqrlem6  29460
  Copyright terms: Public domain W3C validator