HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmopco Structured version   Visualization version   GIF version

Theorem hmopco 29806
Description: The composition of two commuting Hermitian operators is Hermitian. (Contributed by NM, 22-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmopco ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ (𝑇𝑈) = (𝑈𝑇)) → (𝑇𝑈) ∈ HrmOp)

Proof of Theorem hmopco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmopf 29657 . . . 4 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
2 hmopf 29657 . . . 4 (𝑈 ∈ HrmOp → 𝑈: ℋ⟶ ℋ)
3 fco 6505 . . . 4 ((𝑇: ℋ⟶ ℋ ∧ 𝑈: ℋ⟶ ℋ) → (𝑇𝑈): ℋ⟶ ℋ)
41, 2, 3syl2an 598 . . 3 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) → (𝑇𝑈): ℋ⟶ ℋ)
543adant3 1129 . 2 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ (𝑇𝑈) = (𝑈𝑇)) → (𝑇𝑈): ℋ⟶ ℋ)
6 fvco3 6737 . . . . . . . . . 10 ((𝑈: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑈)‘𝑦) = (𝑇‘(𝑈𝑦)))
72, 6sylan 583 . . . . . . . . 9 ((𝑈 ∈ HrmOp ∧ 𝑦 ∈ ℋ) → ((𝑇𝑈)‘𝑦) = (𝑇‘(𝑈𝑦)))
87oveq2d 7151 . . . . . . . 8 ((𝑈 ∈ HrmOp ∧ 𝑦 ∈ ℋ) → (𝑥 ·ih ((𝑇𝑈)‘𝑦)) = (𝑥 ·ih (𝑇‘(𝑈𝑦))))
98ad2ant2l 745 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇𝑈)‘𝑦)) = (𝑥 ·ih (𝑇‘(𝑈𝑦))))
10 simpll 766 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑇 ∈ HrmOp)
11 simprl 770 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑥 ∈ ℋ)
122ffvelrnda 6828 . . . . . . . . 9 ((𝑈 ∈ HrmOp ∧ 𝑦 ∈ ℋ) → (𝑈𝑦) ∈ ℋ)
1312ad2ant2l 745 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑈𝑦) ∈ ℋ)
14 hmop 29705 . . . . . . . 8 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ (𝑈𝑦) ∈ ℋ) → (𝑥 ·ih (𝑇‘(𝑈𝑦))) = ((𝑇𝑥) ·ih (𝑈𝑦)))
1510, 11, 13, 14syl3anc 1368 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑇‘(𝑈𝑦))) = ((𝑇𝑥) ·ih (𝑈𝑦)))
16 simplr 768 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑈 ∈ HrmOp)
171ffvelrnda 6828 . . . . . . . . 9 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
1817ad2ant2r 746 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑇𝑥) ∈ ℋ)
19 simprr 772 . . . . . . . 8 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → 𝑦 ∈ ℋ)
20 hmop 29705 . . . . . . . 8 ((𝑈 ∈ HrmOp ∧ (𝑇𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih (𝑈𝑦)) = ((𝑈‘(𝑇𝑥)) ·ih 𝑦))
2116, 18, 19, 20syl3anc 1368 . . . . . . 7 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih (𝑈𝑦)) = ((𝑈‘(𝑇𝑥)) ·ih 𝑦))
229, 15, 213eqtrd 2837 . . . . . 6 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇𝑈)‘𝑦)) = ((𝑈‘(𝑇𝑥)) ·ih 𝑦))
23 fvco3 6737 . . . . . . . . 9 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑈𝑇)‘𝑥) = (𝑈‘(𝑇𝑥)))
241, 23sylan 583 . . . . . . . 8 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → ((𝑈𝑇)‘𝑥) = (𝑈‘(𝑇𝑥)))
2524oveq1d 7150 . . . . . . 7 ((𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ) → (((𝑈𝑇)‘𝑥) ·ih 𝑦) = ((𝑈‘(𝑇𝑥)) ·ih 𝑦))
2625ad2ant2r 746 . . . . . 6 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑈𝑇)‘𝑥) ·ih 𝑦) = ((𝑈‘(𝑇𝑥)) ·ih 𝑦))
2722, 26eqtr4d 2836 . . . . 5 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇𝑈)‘𝑦)) = (((𝑈𝑇)‘𝑥) ·ih 𝑦))
28273adantl3 1165 . . . 4 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ (𝑇𝑈) = (𝑈𝑇)) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇𝑈)‘𝑦)) = (((𝑈𝑇)‘𝑥) ·ih 𝑦))
29 fveq1 6644 . . . . . . 7 ((𝑇𝑈) = (𝑈𝑇) → ((𝑇𝑈)‘𝑥) = ((𝑈𝑇)‘𝑥))
3029oveq1d 7150 . . . . . 6 ((𝑇𝑈) = (𝑈𝑇) → (((𝑇𝑈)‘𝑥) ·ih 𝑦) = (((𝑈𝑇)‘𝑥) ·ih 𝑦))
31303ad2ant3 1132 . . . . 5 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ (𝑇𝑈) = (𝑈𝑇)) → (((𝑇𝑈)‘𝑥) ·ih 𝑦) = (((𝑈𝑇)‘𝑥) ·ih 𝑦))
3231adantr 484 . . . 4 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ (𝑇𝑈) = (𝑈𝑇)) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑇𝑈)‘𝑥) ·ih 𝑦) = (((𝑈𝑇)‘𝑥) ·ih 𝑦))
3328, 32eqtr4d 2836 . . 3 (((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ (𝑇𝑈) = (𝑈𝑇)) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih ((𝑇𝑈)‘𝑦)) = (((𝑇𝑈)‘𝑥) ·ih 𝑦))
3433ralrimivva 3156 . 2 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ (𝑇𝑈) = (𝑈𝑇)) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((𝑇𝑈)‘𝑦)) = (((𝑇𝑈)‘𝑥) ·ih 𝑦))
35 elhmop 29656 . 2 ((𝑇𝑈) ∈ HrmOp ↔ ((𝑇𝑈): ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih ((𝑇𝑈)‘𝑦)) = (((𝑇𝑈)‘𝑥) ·ih 𝑦)))
365, 34, 35sylanbrc 586 1 ((𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ∧ (𝑇𝑈) = (𝑈𝑇)) → (𝑇𝑈) ∈ HrmOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  ccom 5523  wf 6320  cfv 6324  (class class class)co 7135  chba 28702   ·ih csp 28705  HrmOpcho 28733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-hilex 28782
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-map 8391  df-hmop 29627
This theorem is referenced by:  leopsq  29912  opsqrlem4  29926  opsqrlem6  29928
  Copyright terms: Public domain W3C validator