| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hmop | Structured version Visualization version GIF version | ||
| Description: Basic inner product property of a Hermitian operator. (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hmop | ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elhmop 31809 | . . . 4 ⊢ (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦))) | |
| 2 | 1 | simprbi 496 | . . 3 ⊢ (𝑇 ∈ HrmOp → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦)) |
| 3 | 2 | 3ad2ant1 1133 | . 2 ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦)) |
| 4 | oveq1 7397 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ·ih (𝑇‘𝑦)) = (𝐴 ·ih (𝑇‘𝑦))) | |
| 5 | fveq2 6861 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑇‘𝑥) = (𝑇‘𝐴)) | |
| 6 | 5 | oveq1d 7405 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑇‘𝑥) ·ih 𝑦) = ((𝑇‘𝐴) ·ih 𝑦)) |
| 7 | 4, 6 | eqeq12d 2746 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦) ↔ (𝐴 ·ih (𝑇‘𝑦)) = ((𝑇‘𝐴) ·ih 𝑦))) |
| 8 | fveq2 6861 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑇‘𝑦) = (𝑇‘𝐵)) | |
| 9 | 8 | oveq2d 7406 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 ·ih (𝑇‘𝑦)) = (𝐴 ·ih (𝑇‘𝐵))) |
| 10 | oveq2 7398 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝑇‘𝐴) ·ih 𝑦) = ((𝑇‘𝐴) ·ih 𝐵)) | |
| 11 | 9, 10 | eqeq12d 2746 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ·ih (𝑇‘𝑦)) = ((𝑇‘𝐴) ·ih 𝑦) ↔ (𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵))) |
| 12 | 7, 11 | rspc2v 3602 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦) → (𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵))) |
| 13 | 12 | 3adant1 1130 | . 2 ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦) → (𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵))) |
| 14 | 3, 13 | mpd 15 | 1 ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℋchba 30855 ·ih csp 30858 HrmOpcho 30886 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-hilex 30935 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-hmop 31780 |
| This theorem is referenced by: hmopre 31859 hmopadj 31875 hmoplin 31878 eighmre 31899 eighmorth 31900 hmopbdoptHIL 31924 hmops 31956 hmopm 31957 hmopco 31959 leopsq 32065 hmopidmpji 32088 |
| Copyright terms: Public domain | W3C validator |