HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmop Structured version   Visualization version   GIF version

Theorem hmop 31884
Description: Basic inner product property of a Hermitian operator. (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmop ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵))

Proof of Theorem hmop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elhmop 31835 . . . 4 (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦)))
21simprbi 496 . . 3 (𝑇 ∈ HrmOp → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦))
323ad2ant1 1133 . 2 ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦))
4 oveq1 7360 . . . . 5 (𝑥 = 𝐴 → (𝑥 ·ih (𝑇𝑦)) = (𝐴 ·ih (𝑇𝑦)))
5 fveq2 6826 . . . . . 6 (𝑥 = 𝐴 → (𝑇𝑥) = (𝑇𝐴))
65oveq1d 7368 . . . . 5 (𝑥 = 𝐴 → ((𝑇𝑥) ·ih 𝑦) = ((𝑇𝐴) ·ih 𝑦))
74, 6eqeq12d 2745 . . . 4 (𝑥 = 𝐴 → ((𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦) ↔ (𝐴 ·ih (𝑇𝑦)) = ((𝑇𝐴) ·ih 𝑦)))
8 fveq2 6826 . . . . . 6 (𝑦 = 𝐵 → (𝑇𝑦) = (𝑇𝐵))
98oveq2d 7369 . . . . 5 (𝑦 = 𝐵 → (𝐴 ·ih (𝑇𝑦)) = (𝐴 ·ih (𝑇𝐵)))
10 oveq2 7361 . . . . 5 (𝑦 = 𝐵 → ((𝑇𝐴) ·ih 𝑦) = ((𝑇𝐴) ·ih 𝐵))
119, 10eqeq12d 2745 . . . 4 (𝑦 = 𝐵 → ((𝐴 ·ih (𝑇𝑦)) = ((𝑇𝐴) ·ih 𝑦) ↔ (𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵)))
127, 11rspc2v 3590 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦) → (𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵)))
13123adant1 1130 . 2 ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦) → (𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵)))
143, 13mpd 15 1 ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wf 6482  cfv 6486  (class class class)co 7353  chba 30881   ·ih csp 30884  HrmOpcho 30912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-hilex 30961
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-map 8762  df-hmop 31806
This theorem is referenced by:  hmopre  31885  hmopadj  31901  hmoplin  31904  eighmre  31925  eighmorth  31926  hmopbdoptHIL  31950  hmops  31982  hmopm  31983  hmopco  31985  leopsq  32091  hmopidmpji  32114
  Copyright terms: Public domain W3C validator