HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmop Structured version   Visualization version   GIF version

Theorem hmop 31954
Description: Basic inner product property of a Hermitian operator. (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmop ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵))

Proof of Theorem hmop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elhmop 31905 . . . 4 (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦)))
21simprbi 496 . . 3 (𝑇 ∈ HrmOp → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦))
323ad2ant1 1133 . 2 ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦))
4 oveq1 7455 . . . . 5 (𝑥 = 𝐴 → (𝑥 ·ih (𝑇𝑦)) = (𝐴 ·ih (𝑇𝑦)))
5 fveq2 6920 . . . . . 6 (𝑥 = 𝐴 → (𝑇𝑥) = (𝑇𝐴))
65oveq1d 7463 . . . . 5 (𝑥 = 𝐴 → ((𝑇𝑥) ·ih 𝑦) = ((𝑇𝐴) ·ih 𝑦))
74, 6eqeq12d 2756 . . . 4 (𝑥 = 𝐴 → ((𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦) ↔ (𝐴 ·ih (𝑇𝑦)) = ((𝑇𝐴) ·ih 𝑦)))
8 fveq2 6920 . . . . . 6 (𝑦 = 𝐵 → (𝑇𝑦) = (𝑇𝐵))
98oveq2d 7464 . . . . 5 (𝑦 = 𝐵 → (𝐴 ·ih (𝑇𝑦)) = (𝐴 ·ih (𝑇𝐵)))
10 oveq2 7456 . . . . 5 (𝑦 = 𝐵 → ((𝑇𝐴) ·ih 𝑦) = ((𝑇𝐴) ·ih 𝐵))
119, 10eqeq12d 2756 . . . 4 (𝑦 = 𝐵 → ((𝐴 ·ih (𝑇𝑦)) = ((𝑇𝐴) ·ih 𝑦) ↔ (𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵)))
127, 11rspc2v 3646 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦) → (𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵)))
13123adant1 1130 . 2 ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑇𝑥) ·ih 𝑦) → (𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵)))
143, 13mpd 15 1 ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wf 6569  cfv 6573  (class class class)co 7448  chba 30951   ·ih csp 30954  HrmOpcho 30982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-hilex 31031
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-hmop 31876
This theorem is referenced by:  hmopre  31955  hmopadj  31971  hmoplin  31974  eighmre  31995  eighmorth  31996  hmopbdoptHIL  32020  hmops  32052  hmopm  32053  hmopco  32055  leopsq  32161  hmopidmpji  32184
  Copyright terms: Public domain W3C validator