| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hmop | Structured version Visualization version GIF version | ||
| Description: Basic inner product property of a Hermitian operator. (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hmop | ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elhmop 31854 | . . . 4 ⊢ (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦))) | |
| 2 | 1 | simprbi 496 | . . 3 ⊢ (𝑇 ∈ HrmOp → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦)) |
| 3 | 2 | 3ad2ant1 1133 | . 2 ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦)) |
| 4 | oveq1 7412 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ·ih (𝑇‘𝑦)) = (𝐴 ·ih (𝑇‘𝑦))) | |
| 5 | fveq2 6876 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑇‘𝑥) = (𝑇‘𝐴)) | |
| 6 | 5 | oveq1d 7420 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑇‘𝑥) ·ih 𝑦) = ((𝑇‘𝐴) ·ih 𝑦)) |
| 7 | 4, 6 | eqeq12d 2751 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦) ↔ (𝐴 ·ih (𝑇‘𝑦)) = ((𝑇‘𝐴) ·ih 𝑦))) |
| 8 | fveq2 6876 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑇‘𝑦) = (𝑇‘𝐵)) | |
| 9 | 8 | oveq2d 7421 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 ·ih (𝑇‘𝑦)) = (𝐴 ·ih (𝑇‘𝐵))) |
| 10 | oveq2 7413 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝑇‘𝐴) ·ih 𝑦) = ((𝑇‘𝐴) ·ih 𝐵)) | |
| 11 | 9, 10 | eqeq12d 2751 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ·ih (𝑇‘𝑦)) = ((𝑇‘𝐴) ·ih 𝑦) ↔ (𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵))) |
| 12 | 7, 11 | rspc2v 3612 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦) → (𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵))) |
| 13 | 12 | 3adant1 1130 | . 2 ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦) → (𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵))) |
| 14 | 3, 13 | mpd 15 | 1 ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ℋchba 30900 ·ih csp 30903 HrmOpcho 30931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-hilex 30980 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8842 df-hmop 31825 |
| This theorem is referenced by: hmopre 31904 hmopadj 31920 hmoplin 31923 eighmre 31944 eighmorth 31945 hmopbdoptHIL 31969 hmops 32001 hmopm 32002 hmopco 32004 leopsq 32110 hmopidmpji 32133 |
| Copyright terms: Public domain | W3C validator |