| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hmop | Structured version Visualization version GIF version | ||
| Description: Basic inner product property of a Hermitian operator. (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hmop | ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elhmop 31848 | . . . 4 ⊢ (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦))) | |
| 2 | 1 | simprbi 496 | . . 3 ⊢ (𝑇 ∈ HrmOp → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦)) |
| 3 | 2 | 3ad2ant1 1133 | . 2 ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦)) |
| 4 | oveq1 7353 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ·ih (𝑇‘𝑦)) = (𝐴 ·ih (𝑇‘𝑦))) | |
| 5 | fveq2 6822 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑇‘𝑥) = (𝑇‘𝐴)) | |
| 6 | 5 | oveq1d 7361 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑇‘𝑥) ·ih 𝑦) = ((𝑇‘𝐴) ·ih 𝑦)) |
| 7 | 4, 6 | eqeq12d 2747 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦) ↔ (𝐴 ·ih (𝑇‘𝑦)) = ((𝑇‘𝐴) ·ih 𝑦))) |
| 8 | fveq2 6822 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑇‘𝑦) = (𝑇‘𝐵)) | |
| 9 | 8 | oveq2d 7362 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 ·ih (𝑇‘𝑦)) = (𝐴 ·ih (𝑇‘𝐵))) |
| 10 | oveq2 7354 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝑇‘𝐴) ·ih 𝑦) = ((𝑇‘𝐴) ·ih 𝐵)) | |
| 11 | 9, 10 | eqeq12d 2747 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ·ih (𝑇‘𝑦)) = ((𝑇‘𝐴) ·ih 𝑦) ↔ (𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵))) |
| 12 | 7, 11 | rspc2v 3588 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦) → (𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵))) |
| 13 | 12 | 3adant1 1130 | . 2 ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦) → (𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵))) |
| 14 | 3, 13 | mpd 15 | 1 ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℋchba 30894 ·ih csp 30897 HrmOpcho 30925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-hilex 30974 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-hmop 31819 |
| This theorem is referenced by: hmopre 31898 hmopadj 31914 hmoplin 31917 eighmre 31938 eighmorth 31939 hmopbdoptHIL 31963 hmops 31995 hmopm 31996 hmopco 31998 leopsq 32104 hmopidmpji 32127 |
| Copyright terms: Public domain | W3C validator |