HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmop Structured version   Visualization version   GIF version

Theorem hmop 31647
Description: Basic inner product property of a Hermitian operator. (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmop ((๐‘‡ โˆˆ HrmOp โˆง ๐ด โˆˆ โ„‹ โˆง ๐ต โˆˆ โ„‹) โ†’ (๐ด ยทih (๐‘‡โ€˜๐ต)) = ((๐‘‡โ€˜๐ด) ยทih ๐ต))

Proof of Theorem hmop
Dummy variables ๐‘ฅ ๐‘ฆ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elhmop 31598 . . . 4 (๐‘‡ โˆˆ HrmOp โ†” (๐‘‡: โ„‹โŸถ โ„‹ โˆง โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘‡โ€˜๐‘ฅ) ยทih ๐‘ฆ)))
21simprbi 496 . . 3 (๐‘‡ โˆˆ HrmOp โ†’ โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘‡โ€˜๐‘ฅ) ยทih ๐‘ฆ))
323ad2ant1 1130 . 2 ((๐‘‡ โˆˆ HrmOp โˆง ๐ด โˆˆ โ„‹ โˆง ๐ต โˆˆ โ„‹) โ†’ โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘‡โ€˜๐‘ฅ) ยทih ๐‘ฆ))
4 oveq1 7409 . . . . 5 (๐‘ฅ = ๐ด โ†’ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = (๐ด ยทih (๐‘‡โ€˜๐‘ฆ)))
5 fveq2 6882 . . . . . 6 (๐‘ฅ = ๐ด โ†’ (๐‘‡โ€˜๐‘ฅ) = (๐‘‡โ€˜๐ด))
65oveq1d 7417 . . . . 5 (๐‘ฅ = ๐ด โ†’ ((๐‘‡โ€˜๐‘ฅ) ยทih ๐‘ฆ) = ((๐‘‡โ€˜๐ด) ยทih ๐‘ฆ))
74, 6eqeq12d 2740 . . . 4 (๐‘ฅ = ๐ด โ†’ ((๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘‡โ€˜๐‘ฅ) ยทih ๐‘ฆ) โ†” (๐ด ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘‡โ€˜๐ด) ยทih ๐‘ฆ)))
8 fveq2 6882 . . . . . 6 (๐‘ฆ = ๐ต โ†’ (๐‘‡โ€˜๐‘ฆ) = (๐‘‡โ€˜๐ต))
98oveq2d 7418 . . . . 5 (๐‘ฆ = ๐ต โ†’ (๐ด ยทih (๐‘‡โ€˜๐‘ฆ)) = (๐ด ยทih (๐‘‡โ€˜๐ต)))
10 oveq2 7410 . . . . 5 (๐‘ฆ = ๐ต โ†’ ((๐‘‡โ€˜๐ด) ยทih ๐‘ฆ) = ((๐‘‡โ€˜๐ด) ยทih ๐ต))
119, 10eqeq12d 2740 . . . 4 (๐‘ฆ = ๐ต โ†’ ((๐ด ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘‡โ€˜๐ด) ยทih ๐‘ฆ) โ†” (๐ด ยทih (๐‘‡โ€˜๐ต)) = ((๐‘‡โ€˜๐ด) ยทih ๐ต)))
127, 11rspc2v 3615 . . 3 ((๐ด โˆˆ โ„‹ โˆง ๐ต โˆˆ โ„‹) โ†’ (โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘‡โ€˜๐‘ฅ) ยทih ๐‘ฆ) โ†’ (๐ด ยทih (๐‘‡โ€˜๐ต)) = ((๐‘‡โ€˜๐ด) ยทih ๐ต)))
13123adant1 1127 . 2 ((๐‘‡ โˆˆ HrmOp โˆง ๐ด โˆˆ โ„‹ โˆง ๐ต โˆˆ โ„‹) โ†’ (โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘‡โ€˜๐‘ฅ) ยทih ๐‘ฆ) โ†’ (๐ด ยทih (๐‘‡โ€˜๐ต)) = ((๐‘‡โ€˜๐ด) ยทih ๐ต)))
143, 13mpd 15 1 ((๐‘‡ โˆˆ HrmOp โˆง ๐ด โˆˆ โ„‹ โˆง ๐ต โˆˆ โ„‹) โ†’ (๐ด ยทih (๐‘‡โ€˜๐ต)) = ((๐‘‡โ€˜๐ด) ยทih ๐ต))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง w3a 1084   = wceq 1533   โˆˆ wcel 2098  โˆ€wral 3053  โŸถwf 6530  โ€˜cfv 6534  (class class class)co 7402   โ„‹chba 30644   ยทih csp 30647  HrmOpcho 30675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-hilex 30724
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-map 8819  df-hmop 31569
This theorem is referenced by:  hmopre  31648  hmopadj  31664  hmoplin  31667  eighmre  31688  eighmorth  31689  hmopbdoptHIL  31713  hmops  31745  hmopm  31746  hmopco  31748  leopsq  31854  hmopidmpji  31877
  Copyright terms: Public domain W3C validator