HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmop Structured version   Visualization version   GIF version

Theorem hmop 31726
Description: Basic inner product property of a Hermitian operator. (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmop ((๐‘‡ โˆˆ HrmOp โˆง ๐ด โˆˆ โ„‹ โˆง ๐ต โˆˆ โ„‹) โ†’ (๐ด ยทih (๐‘‡โ€˜๐ต)) = ((๐‘‡โ€˜๐ด) ยทih ๐ต))

Proof of Theorem hmop
Dummy variables ๐‘ฅ ๐‘ฆ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elhmop 31677 . . . 4 (๐‘‡ โˆˆ HrmOp โ†” (๐‘‡: โ„‹โŸถ โ„‹ โˆง โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘‡โ€˜๐‘ฅ) ยทih ๐‘ฆ)))
21simprbi 496 . . 3 (๐‘‡ โˆˆ HrmOp โ†’ โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘‡โ€˜๐‘ฅ) ยทih ๐‘ฆ))
323ad2ant1 1131 . 2 ((๐‘‡ โˆˆ HrmOp โˆง ๐ด โˆˆ โ„‹ โˆง ๐ต โˆˆ โ„‹) โ†’ โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘‡โ€˜๐‘ฅ) ยทih ๐‘ฆ))
4 oveq1 7422 . . . . 5 (๐‘ฅ = ๐ด โ†’ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = (๐ด ยทih (๐‘‡โ€˜๐‘ฆ)))
5 fveq2 6892 . . . . . 6 (๐‘ฅ = ๐ด โ†’ (๐‘‡โ€˜๐‘ฅ) = (๐‘‡โ€˜๐ด))
65oveq1d 7430 . . . . 5 (๐‘ฅ = ๐ด โ†’ ((๐‘‡โ€˜๐‘ฅ) ยทih ๐‘ฆ) = ((๐‘‡โ€˜๐ด) ยทih ๐‘ฆ))
74, 6eqeq12d 2744 . . . 4 (๐‘ฅ = ๐ด โ†’ ((๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘‡โ€˜๐‘ฅ) ยทih ๐‘ฆ) โ†” (๐ด ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘‡โ€˜๐ด) ยทih ๐‘ฆ)))
8 fveq2 6892 . . . . . 6 (๐‘ฆ = ๐ต โ†’ (๐‘‡โ€˜๐‘ฆ) = (๐‘‡โ€˜๐ต))
98oveq2d 7431 . . . . 5 (๐‘ฆ = ๐ต โ†’ (๐ด ยทih (๐‘‡โ€˜๐‘ฆ)) = (๐ด ยทih (๐‘‡โ€˜๐ต)))
10 oveq2 7423 . . . . 5 (๐‘ฆ = ๐ต โ†’ ((๐‘‡โ€˜๐ด) ยทih ๐‘ฆ) = ((๐‘‡โ€˜๐ด) ยทih ๐ต))
119, 10eqeq12d 2744 . . . 4 (๐‘ฆ = ๐ต โ†’ ((๐ด ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘‡โ€˜๐ด) ยทih ๐‘ฆ) โ†” (๐ด ยทih (๐‘‡โ€˜๐ต)) = ((๐‘‡โ€˜๐ด) ยทih ๐ต)))
127, 11rspc2v 3619 . . 3 ((๐ด โˆˆ โ„‹ โˆง ๐ต โˆˆ โ„‹) โ†’ (โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘‡โ€˜๐‘ฅ) ยทih ๐‘ฆ) โ†’ (๐ด ยทih (๐‘‡โ€˜๐ต)) = ((๐‘‡โ€˜๐ด) ยทih ๐ต)))
13123adant1 1128 . 2 ((๐‘‡ โˆˆ HrmOp โˆง ๐ด โˆˆ โ„‹ โˆง ๐ต โˆˆ โ„‹) โ†’ (โˆ€๐‘ฅ โˆˆ โ„‹ โˆ€๐‘ฆ โˆˆ โ„‹ (๐‘ฅ ยทih (๐‘‡โ€˜๐‘ฆ)) = ((๐‘‡โ€˜๐‘ฅ) ยทih ๐‘ฆ) โ†’ (๐ด ยทih (๐‘‡โ€˜๐ต)) = ((๐‘‡โ€˜๐ด) ยทih ๐ต)))
143, 13mpd 15 1 ((๐‘‡ โˆˆ HrmOp โˆง ๐ด โˆˆ โ„‹ โˆง ๐ต โˆˆ โ„‹) โ†’ (๐ด ยทih (๐‘‡โ€˜๐ต)) = ((๐‘‡โ€˜๐ด) ยทih ๐ต))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง w3a 1085   = wceq 1534   โˆˆ wcel 2099  โˆ€wral 3057  โŸถwf 6539  โ€˜cfv 6543  (class class class)co 7415   โ„‹chba 30723   ยทih csp 30726  HrmOpcho 30754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-hilex 30803
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5144  df-opab 5206  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7418  df-oprab 7419  df-mpo 7420  df-map 8841  df-hmop 31648
This theorem is referenced by:  hmopre  31727  hmopadj  31743  hmoplin  31746  eighmre  31767  eighmorth  31768  hmopbdoptHIL  31792  hmops  31824  hmopm  31825  hmopco  31827  leopsq  31933  hmopidmpji  31956
  Copyright terms: Public domain W3C validator