Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > icoltub | Structured version Visualization version GIF version |
Description: An element of a left-closed right-open interval is less than its upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
icoltub | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 < 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elico1 13132 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) | |
2 | simp3 1137 | . . 3 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵) → 𝐶 < 𝐵) | |
3 | 1, 2 | syl6bi 252 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) → 𝐶 < 𝐵)) |
4 | 3 | 3impia 1116 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 < 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 class class class wbr 5073 (class class class)co 7267 ℝ*cxr 11018 < clt 11019 ≤ cle 11020 [,)cico 13091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-sbc 3716 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-iota 6384 df-fun 6428 df-fv 6434 df-ov 7270 df-oprab 7271 df-mpo 7272 df-xr 11023 df-ico 13095 |
This theorem is referenced by: icoopn 43044 icoub 43045 icoltubd 43064 ltmod 43160 limcresioolb 43165 fourierdlem41 43670 fourierdlem43 43672 fourierdlem46 43674 fourierdlem48 43676 fouriersw 43753 hoidmv1lelem2 44111 hoidmvlelem2 44115 hspdifhsp 44135 hspmbllem2 44146 iinhoiicclem 44192 preimaicomnf 44227 |
Copyright terms: Public domain | W3C validator |