Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressiocsup Structured version   Visualization version   GIF version

Theorem ressiocsup 40419
Description: If the supremum belongs to a set of reals, the set is a subset of the unbounded below, right-closed interval, with upper bound equal to the supremum. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
ressiocsup.a (𝜑𝐴 ⊆ ℝ)
ressiocsup.s 𝑆 = sup(𝐴, ℝ*, < )
ressiocsup.e (𝜑𝑆𝐴)
ressiocsup.5 𝐼 = (-∞(,]𝑆)
Assertion
Ref Expression
ressiocsup (𝜑𝐴𝐼)

Proof of Theorem ressiocsup
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mnfxr 10350 . . . . . 6 -∞ ∈ ℝ*
21a1i 11 . . . . 5 ((𝜑𝑥𝐴) → -∞ ∈ ℝ*)
3 ressiocsup.s . . . . . 6 𝑆 = sup(𝐴, ℝ*, < )
4 ressiocsup.a . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
5 ressxr 10337 . . . . . . . . . 10 ℝ ⊆ ℝ*
65a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℝ*)
74, 6sstrd 3771 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ*)
87adantr 472 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐴 ⊆ ℝ*)
98supxrcld 39940 . . . . . 6 ((𝜑𝑥𝐴) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
103, 9syl5eqel 2848 . . . . 5 ((𝜑𝑥𝐴) → 𝑆 ∈ ℝ*)
117sselda 3761 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ*)
124adantr 472 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐴 ⊆ ℝ)
13 simpr 477 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
1412, 13sseldd 3762 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
1514mnfltd 12158 . . . . 5 ((𝜑𝑥𝐴) → -∞ < 𝑥)
16 supxrub 12356 . . . . . . 7 ((𝐴 ⊆ ℝ*𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℝ*, < ))
178, 13, 16syl2anc 579 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℝ*, < ))
183a1i 11 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑆 = sup(𝐴, ℝ*, < ))
1918eqcomd 2771 . . . . . 6 ((𝜑𝑥𝐴) → sup(𝐴, ℝ*, < ) = 𝑆)
2017, 19breqtrd 4835 . . . . 5 ((𝜑𝑥𝐴) → 𝑥𝑆)
212, 10, 11, 15, 20eliocd 40372 . . . 4 ((𝜑𝑥𝐴) → 𝑥 ∈ (-∞(,]𝑆))
22 ressiocsup.5 . . . 4 𝐼 = (-∞(,]𝑆)
2321, 22syl6eleqr 2855 . . 3 ((𝜑𝑥𝐴) → 𝑥𝐼)
2423ralrimiva 3113 . 2 (𝜑 → ∀𝑥𝐴 𝑥𝐼)
25 dfss3 3750 . 2 (𝐴𝐼 ↔ ∀𝑥𝐴 𝑥𝐼)
2624, 25sylibr 225 1 (𝜑𝐴𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  wral 3055  wss 3732   class class class wbr 4809  (class class class)co 6842  supcsup 8553  cr 10188  -∞cmnf 10326  *cxr 10327   < clt 10328  cle 10329  (,]cioc 12378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-po 5198  df-so 5199  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-sup 8555  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-ioc 12382
This theorem is referenced by:  pimdecfgtioc  41565  pimincfltioc  41566
  Copyright terms: Public domain W3C validator