| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eliooshift | Structured version Visualization version GIF version | ||
| Description: Element of an open interval shifted by a displacement. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| eliooshift.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| eliooshift.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| eliooshift.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| eliooshift.d | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| Ref | Expression |
|---|---|
| eliooshift | ⊢ (𝜑 → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 + 𝐷) ∈ ((𝐵 + 𝐷)(,)(𝐶 + 𝐷)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliooshift.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | eliooshift.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
| 3 | 1, 2 | readdcld 11152 | . . . 4 ⊢ (𝜑 → (𝐴 + 𝐷) ∈ ℝ) |
| 4 | 3, 1 | 2thd 265 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐷) ∈ ℝ ↔ 𝐴 ∈ ℝ)) |
| 5 | eliooshift.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 6 | 5, 1, 2 | ltadd1d 11721 | . . . 4 ⊢ (𝜑 → (𝐵 < 𝐴 ↔ (𝐵 + 𝐷) < (𝐴 + 𝐷))) |
| 7 | 6 | bicomd 223 | . . 3 ⊢ (𝜑 → ((𝐵 + 𝐷) < (𝐴 + 𝐷) ↔ 𝐵 < 𝐴)) |
| 8 | eliooshift.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 9 | 1, 8, 2 | ltadd1d 11721 | . . . 4 ⊢ (𝜑 → (𝐴 < 𝐶 ↔ (𝐴 + 𝐷) < (𝐶 + 𝐷))) |
| 10 | 9 | bicomd 223 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐷) < (𝐶 + 𝐷) ↔ 𝐴 < 𝐶)) |
| 11 | 4, 7, 10 | 3anbi123d 1438 | . 2 ⊢ (𝜑 → (((𝐴 + 𝐷) ∈ ℝ ∧ (𝐵 + 𝐷) < (𝐴 + 𝐷) ∧ (𝐴 + 𝐷) < (𝐶 + 𝐷)) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) |
| 12 | 5, 2 | readdcld 11152 | . . . 4 ⊢ (𝜑 → (𝐵 + 𝐷) ∈ ℝ) |
| 13 | 12 | rexrd 11173 | . . 3 ⊢ (𝜑 → (𝐵 + 𝐷) ∈ ℝ*) |
| 14 | 8, 2 | readdcld 11152 | . . . 4 ⊢ (𝜑 → (𝐶 + 𝐷) ∈ ℝ) |
| 15 | 14 | rexrd 11173 | . . 3 ⊢ (𝜑 → (𝐶 + 𝐷) ∈ ℝ*) |
| 16 | elioo2 13293 | . . 3 ⊢ (((𝐵 + 𝐷) ∈ ℝ* ∧ (𝐶 + 𝐷) ∈ ℝ*) → ((𝐴 + 𝐷) ∈ ((𝐵 + 𝐷)(,)(𝐶 + 𝐷)) ↔ ((𝐴 + 𝐷) ∈ ℝ ∧ (𝐵 + 𝐷) < (𝐴 + 𝐷) ∧ (𝐴 + 𝐷) < (𝐶 + 𝐷)))) | |
| 17 | 13, 15, 16 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐷) ∈ ((𝐵 + 𝐷)(,)(𝐶 + 𝐷)) ↔ ((𝐴 + 𝐷) ∈ ℝ ∧ (𝐵 + 𝐷) < (𝐴 + 𝐷) ∧ (𝐴 + 𝐷) < (𝐶 + 𝐷)))) |
| 18 | 5 | rexrd 11173 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| 19 | 8 | rexrd 11173 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| 20 | elioo2 13293 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) | |
| 21 | 18, 19, 20 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) |
| 22 | 11, 17, 21 | 3bitr4rd 312 | 1 ⊢ (𝜑 → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 + 𝐷) ∈ ((𝐵 + 𝐷)(,)(𝐶 + 𝐷)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2113 class class class wbr 5095 (class class class)co 7355 ℝcr 11016 + caddc 11020 ℝ*cxr 11156 < clt 11157 (,)cioo 13252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-ioo 13256 |
| This theorem is referenced by: fourierdlem88 46354 |
| Copyright terms: Public domain | W3C validator |