Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliooshift Structured version   Visualization version   GIF version

Theorem eliooshift 42607
Description: Element of an open interval shifted by a displacement. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
eliooshift.a (𝜑𝐴 ∈ ℝ)
eliooshift.b (𝜑𝐵 ∈ ℝ)
eliooshift.c (𝜑𝐶 ∈ ℝ)
eliooshift.d (𝜑𝐷 ∈ ℝ)
Assertion
Ref Expression
eliooshift (𝜑 → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 + 𝐷) ∈ ((𝐵 + 𝐷)(,)(𝐶 + 𝐷))))

Proof of Theorem eliooshift
StepHypRef Expression
1 eliooshift.a . . . . 5 (𝜑𝐴 ∈ ℝ)
2 eliooshift.d . . . . 5 (𝜑𝐷 ∈ ℝ)
31, 2readdcld 10751 . . . 4 (𝜑 → (𝐴 + 𝐷) ∈ ℝ)
43, 12thd 268 . . 3 (𝜑 → ((𝐴 + 𝐷) ∈ ℝ ↔ 𝐴 ∈ ℝ))
5 eliooshift.b . . . . 5 (𝜑𝐵 ∈ ℝ)
65, 1, 2ltadd1d 11314 . . . 4 (𝜑 → (𝐵 < 𝐴 ↔ (𝐵 + 𝐷) < (𝐴 + 𝐷)))
76bicomd 226 . . 3 (𝜑 → ((𝐵 + 𝐷) < (𝐴 + 𝐷) ↔ 𝐵 < 𝐴))
8 eliooshift.c . . . . 5 (𝜑𝐶 ∈ ℝ)
91, 8, 2ltadd1d 11314 . . . 4 (𝜑 → (𝐴 < 𝐶 ↔ (𝐴 + 𝐷) < (𝐶 + 𝐷)))
109bicomd 226 . . 3 (𝜑 → ((𝐴 + 𝐷) < (𝐶 + 𝐷) ↔ 𝐴 < 𝐶))
114, 7, 103anbi123d 1437 . 2 (𝜑 → (((𝐴 + 𝐷) ∈ ℝ ∧ (𝐵 + 𝐷) < (𝐴 + 𝐷) ∧ (𝐴 + 𝐷) < (𝐶 + 𝐷)) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶)))
125, 2readdcld 10751 . . . 4 (𝜑 → (𝐵 + 𝐷) ∈ ℝ)
1312rexrd 10772 . . 3 (𝜑 → (𝐵 + 𝐷) ∈ ℝ*)
148, 2readdcld 10751 . . . 4 (𝜑 → (𝐶 + 𝐷) ∈ ℝ)
1514rexrd 10772 . . 3 (𝜑 → (𝐶 + 𝐷) ∈ ℝ*)
16 elioo2 12865 . . 3 (((𝐵 + 𝐷) ∈ ℝ* ∧ (𝐶 + 𝐷) ∈ ℝ*) → ((𝐴 + 𝐷) ∈ ((𝐵 + 𝐷)(,)(𝐶 + 𝐷)) ↔ ((𝐴 + 𝐷) ∈ ℝ ∧ (𝐵 + 𝐷) < (𝐴 + 𝐷) ∧ (𝐴 + 𝐷) < (𝐶 + 𝐷))))
1713, 15, 16syl2anc 587 . 2 (𝜑 → ((𝐴 + 𝐷) ∈ ((𝐵 + 𝐷)(,)(𝐶 + 𝐷)) ↔ ((𝐴 + 𝐷) ∈ ℝ ∧ (𝐵 + 𝐷) < (𝐴 + 𝐷) ∧ (𝐴 + 𝐷) < (𝐶 + 𝐷))))
185rexrd 10772 . . 3 (𝜑𝐵 ∈ ℝ*)
198rexrd 10772 . . 3 (𝜑𝐶 ∈ ℝ*)
20 elioo2 12865 . . 3 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶)))
2118, 19, 20syl2anc 587 . 2 (𝜑 → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶)))
2211, 17, 213bitr4rd 315 1 (𝜑 → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 + 𝐷) ∈ ((𝐵 + 𝐷)(,)(𝐶 + 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1088  wcel 2114   class class class wbr 5031  (class class class)co 7173  cr 10617   + caddc 10621  *cxr 10755   < clt 10756  (,)cioo 12824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5430  df-po 5443  df-so 5444  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7176  df-oprab 7177  df-mpo 7178  df-1st 7717  df-2nd 7718  df-er 8323  df-en 8559  df-dom 8560  df-sdom 8561  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-ioo 12828
This theorem is referenced by:  fourierdlem88  43300
  Copyright terms: Public domain W3C validator