|   | Mathbox for Glauco Siliprandi | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eliooshift | Structured version Visualization version GIF version | ||
| Description: Element of an open interval shifted by a displacement. (Contributed by Glauco Siliprandi, 11-Dec-2019.) | 
| Ref | Expression | 
|---|---|
| eliooshift.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| eliooshift.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) | 
| eliooshift.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) | 
| eliooshift.d | ⊢ (𝜑 → 𝐷 ∈ ℝ) | 
| Ref | Expression | 
|---|---|
| eliooshift | ⊢ (𝜑 → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 + 𝐷) ∈ ((𝐵 + 𝐷)(,)(𝐶 + 𝐷)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eliooshift.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | eliooshift.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
| 3 | 1, 2 | readdcld 11290 | . . . 4 ⊢ (𝜑 → (𝐴 + 𝐷) ∈ ℝ) | 
| 4 | 3, 1 | 2thd 265 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐷) ∈ ℝ ↔ 𝐴 ∈ ℝ)) | 
| 5 | eliooshift.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 6 | 5, 1, 2 | ltadd1d 11856 | . . . 4 ⊢ (𝜑 → (𝐵 < 𝐴 ↔ (𝐵 + 𝐷) < (𝐴 + 𝐷))) | 
| 7 | 6 | bicomd 223 | . . 3 ⊢ (𝜑 → ((𝐵 + 𝐷) < (𝐴 + 𝐷) ↔ 𝐵 < 𝐴)) | 
| 8 | eliooshift.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 9 | 1, 8, 2 | ltadd1d 11856 | . . . 4 ⊢ (𝜑 → (𝐴 < 𝐶 ↔ (𝐴 + 𝐷) < (𝐶 + 𝐷))) | 
| 10 | 9 | bicomd 223 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐷) < (𝐶 + 𝐷) ↔ 𝐴 < 𝐶)) | 
| 11 | 4, 7, 10 | 3anbi123d 1438 | . 2 ⊢ (𝜑 → (((𝐴 + 𝐷) ∈ ℝ ∧ (𝐵 + 𝐷) < (𝐴 + 𝐷) ∧ (𝐴 + 𝐷) < (𝐶 + 𝐷)) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) | 
| 12 | 5, 2 | readdcld 11290 | . . . 4 ⊢ (𝜑 → (𝐵 + 𝐷) ∈ ℝ) | 
| 13 | 12 | rexrd 11311 | . . 3 ⊢ (𝜑 → (𝐵 + 𝐷) ∈ ℝ*) | 
| 14 | 8, 2 | readdcld 11290 | . . . 4 ⊢ (𝜑 → (𝐶 + 𝐷) ∈ ℝ) | 
| 15 | 14 | rexrd 11311 | . . 3 ⊢ (𝜑 → (𝐶 + 𝐷) ∈ ℝ*) | 
| 16 | elioo2 13428 | . . 3 ⊢ (((𝐵 + 𝐷) ∈ ℝ* ∧ (𝐶 + 𝐷) ∈ ℝ*) → ((𝐴 + 𝐷) ∈ ((𝐵 + 𝐷)(,)(𝐶 + 𝐷)) ↔ ((𝐴 + 𝐷) ∈ ℝ ∧ (𝐵 + 𝐷) < (𝐴 + 𝐷) ∧ (𝐴 + 𝐷) < (𝐶 + 𝐷)))) | |
| 17 | 13, 15, 16 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐷) ∈ ((𝐵 + 𝐷)(,)(𝐶 + 𝐷)) ↔ ((𝐴 + 𝐷) ∈ ℝ ∧ (𝐵 + 𝐷) < (𝐴 + 𝐷) ∧ (𝐴 + 𝐷) < (𝐶 + 𝐷)))) | 
| 18 | 5 | rexrd 11311 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | 
| 19 | 8 | rexrd 11311 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | 
| 20 | elioo2 13428 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) | |
| 21 | 18, 19, 20 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) | 
| 22 | 11, 17, 21 | 3bitr4rd 312 | 1 ⊢ (𝜑 → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 + 𝐷) ∈ ((𝐵 + 𝐷)(,)(𝐶 + 𝐷)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 ∈ wcel 2108 class class class wbr 5143 (class class class)co 7431 ℝcr 11154 + caddc 11158 ℝ*cxr 11294 < clt 11295 (,)cioo 13387 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-ioo 13391 | 
| This theorem is referenced by: fourierdlem88 46209 | 
| Copyright terms: Public domain | W3C validator |