| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eliooshift | Structured version Visualization version GIF version | ||
| Description: Element of an open interval shifted by a displacement. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| eliooshift.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| eliooshift.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| eliooshift.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| eliooshift.d | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| Ref | Expression |
|---|---|
| eliooshift | ⊢ (𝜑 → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 + 𝐷) ∈ ((𝐵 + 𝐷)(,)(𝐶 + 𝐷)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliooshift.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | eliooshift.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
| 3 | 1, 2 | readdcld 11269 | . . . 4 ⊢ (𝜑 → (𝐴 + 𝐷) ∈ ℝ) |
| 4 | 3, 1 | 2thd 265 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐷) ∈ ℝ ↔ 𝐴 ∈ ℝ)) |
| 5 | eliooshift.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 6 | 5, 1, 2 | ltadd1d 11835 | . . . 4 ⊢ (𝜑 → (𝐵 < 𝐴 ↔ (𝐵 + 𝐷) < (𝐴 + 𝐷))) |
| 7 | 6 | bicomd 223 | . . 3 ⊢ (𝜑 → ((𝐵 + 𝐷) < (𝐴 + 𝐷) ↔ 𝐵 < 𝐴)) |
| 8 | eliooshift.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 9 | 1, 8, 2 | ltadd1d 11835 | . . . 4 ⊢ (𝜑 → (𝐴 < 𝐶 ↔ (𝐴 + 𝐷) < (𝐶 + 𝐷))) |
| 10 | 9 | bicomd 223 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐷) < (𝐶 + 𝐷) ↔ 𝐴 < 𝐶)) |
| 11 | 4, 7, 10 | 3anbi123d 1438 | . 2 ⊢ (𝜑 → (((𝐴 + 𝐷) ∈ ℝ ∧ (𝐵 + 𝐷) < (𝐴 + 𝐷) ∧ (𝐴 + 𝐷) < (𝐶 + 𝐷)) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) |
| 12 | 5, 2 | readdcld 11269 | . . . 4 ⊢ (𝜑 → (𝐵 + 𝐷) ∈ ℝ) |
| 13 | 12 | rexrd 11290 | . . 3 ⊢ (𝜑 → (𝐵 + 𝐷) ∈ ℝ*) |
| 14 | 8, 2 | readdcld 11269 | . . . 4 ⊢ (𝜑 → (𝐶 + 𝐷) ∈ ℝ) |
| 15 | 14 | rexrd 11290 | . . 3 ⊢ (𝜑 → (𝐶 + 𝐷) ∈ ℝ*) |
| 16 | elioo2 13408 | . . 3 ⊢ (((𝐵 + 𝐷) ∈ ℝ* ∧ (𝐶 + 𝐷) ∈ ℝ*) → ((𝐴 + 𝐷) ∈ ((𝐵 + 𝐷)(,)(𝐶 + 𝐷)) ↔ ((𝐴 + 𝐷) ∈ ℝ ∧ (𝐵 + 𝐷) < (𝐴 + 𝐷) ∧ (𝐴 + 𝐷) < (𝐶 + 𝐷)))) | |
| 17 | 13, 15, 16 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐷) ∈ ((𝐵 + 𝐷)(,)(𝐶 + 𝐷)) ↔ ((𝐴 + 𝐷) ∈ ℝ ∧ (𝐵 + 𝐷) < (𝐴 + 𝐷) ∧ (𝐴 + 𝐷) < (𝐶 + 𝐷)))) |
| 18 | 5 | rexrd 11290 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| 19 | 8 | rexrd 11290 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| 20 | elioo2 13408 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) | |
| 21 | 18, 19, 20 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) |
| 22 | 11, 17, 21 | 3bitr4rd 312 | 1 ⊢ (𝜑 → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 + 𝐷) ∈ ((𝐵 + 𝐷)(,)(𝐶 + 𝐷)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5124 (class class class)co 7410 ℝcr 11133 + caddc 11137 ℝ*cxr 11273 < clt 11274 (,)cioo 13367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-ioo 13371 |
| This theorem is referenced by: fourierdlem88 46190 |
| Copyright terms: Public domain | W3C validator |