| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3syld | Structured version Visualization version GIF version | ||
| Description: Triple syllogism deduction. Deduction associated with 3syld 60. (Contributed by Jeff Hankins, 4-Aug-2009.) |
| Ref | Expression |
|---|---|
| 3syld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3syld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 3syld.3 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| 3syld | ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3syld.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 3syld.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 3 | 1, 2 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 3syld.3 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 5 | 3, 4 | syld 47 | 1 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: oaordi 8464 nnaordi 8536 fineqvlem 9155 dif1ennnALT 9166 rankr1ag 9698 cfslb2n 10162 fin23lem27 10222 gchpwdom 10564 prlem934 10927 axpre-sup 11063 cju 12124 xrub 13214 facavg 14208 mulcn2 15503 o1rlimmul 15526 coprm 16622 rpexp 16633 vdwnnlem3 16909 gexdvds 19463 cnpnei 23149 comppfsc 23417 alexsubALTlem3 23934 alexsubALTlem4 23935 iccntr 24708 cfil3i 25167 bcth3 25229 lgseisenlem2 27285 cusgredg 29369 uspgr2wlkeq 29591 ubthlem1 30814 staddi 32190 stadd3i 32192 addltmulALT 32390 expgt0b 32762 cnre2csqlem 33883 tpr2rico 33885 satffunlem2lem1 35387 mclsax 35552 dfrdg4 35935 segconeq 35994 nn0prpwlem 36306 bj-bary1lem1 37295 poimirlem29 37639 fdc 37735 bfplem2 37813 atexchcvrN 39429 dalem3 39653 cdleme3h 40224 cdleme21ct 40318 oexpreposd 42305 cantnfresb 43307 omabs2 43315 naddwordnexlem4 43384 sbgoldbwt 47771 sbgoldbst 47772 nnsum4primesodd 47790 nnsum4primesoddALTV 47791 dignn0flhalflem1 48610 |
| Copyright terms: Public domain | W3C validator |