| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3syld | Structured version Visualization version GIF version | ||
| Description: Triple syllogism deduction. Deduction associated with 3syld 60. (Contributed by Jeff Hankins, 4-Aug-2009.) |
| Ref | Expression |
|---|---|
| 3syld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3syld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 3syld.3 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| 3syld | ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3syld.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 3syld.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 3 | 1, 2 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 3syld.3 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 5 | 3, 4 | syld 47 | 1 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: oaordi 8487 nnaordi 8559 fineqvlem 9185 dif1ennnALT 9198 xpfiOLD 9246 rankr1ag 9731 cfslb2n 10197 fin23lem27 10257 gchpwdom 10599 prlem934 10962 axpre-sup 11098 cju 12158 xrub 13248 facavg 14242 mulcn2 15538 o1rlimmul 15561 coprm 16657 rpexp 16668 vdwnnlem3 16944 gexdvds 19498 cnpnei 23184 comppfsc 23452 alexsubALTlem3 23969 alexsubALTlem4 23970 iccntr 24743 cfil3i 25202 bcth3 25264 lgseisenlem2 27320 cusgredg 29404 uspgr2wlkeq 29626 ubthlem1 30849 staddi 32225 stadd3i 32227 addltmulALT 32425 expgt0b 32791 cnre2csqlem 33893 tpr2rico 33895 satffunlem2lem1 35384 mclsax 35549 dfrdg4 35932 segconeq 35991 nn0prpwlem 36303 bj-bary1lem1 37292 poimirlem29 37636 fdc 37732 bfplem2 37810 atexchcvrN 39427 dalem3 39651 cdleme3h 40222 cdleme21ct 40316 oexpreposd 42303 cantnfresb 43306 omabs2 43314 naddwordnexlem4 43383 sbgoldbwt 47771 sbgoldbst 47772 nnsum4primesodd 47790 nnsum4primesoddALTV 47791 dignn0flhalflem1 48597 |
| Copyright terms: Public domain | W3C validator |