| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3syld | Structured version Visualization version GIF version | ||
| Description: Triple syllogism deduction. Deduction associated with 3syld 60. (Contributed by Jeff Hankins, 4-Aug-2009.) |
| Ref | Expression |
|---|---|
| 3syld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3syld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 3syld.3 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| 3syld | ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3syld.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 3syld.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 3 | 1, 2 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 3syld.3 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 5 | 3, 4 | syld 47 | 1 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: oaordi 8510 nnaordi 8582 fineqvlem 9209 dif1ennnALT 9222 xpfiOLD 9270 rankr1ag 9755 cfslb2n 10221 fin23lem27 10281 gchpwdom 10623 prlem934 10986 axpre-sup 11122 cju 12182 xrub 13272 facavg 14266 mulcn2 15562 o1rlimmul 15585 coprm 16681 rpexp 16692 vdwnnlem3 16968 gexdvds 19514 cnpnei 23151 comppfsc 23419 alexsubALTlem3 23936 alexsubALTlem4 23937 iccntr 24710 cfil3i 25169 bcth3 25231 lgseisenlem2 27287 cusgredg 29351 uspgr2wlkeq 29574 ubthlem1 30799 staddi 32175 stadd3i 32177 addltmulALT 32375 expgt0b 32741 cnre2csqlem 33900 tpr2rico 33902 satffunlem2lem1 35391 mclsax 35556 dfrdg4 35939 segconeq 35998 nn0prpwlem 36310 bj-bary1lem1 37299 poimirlem29 37643 fdc 37739 bfplem2 37817 atexchcvrN 39434 dalem3 39658 cdleme3h 40229 cdleme21ct 40323 oexpreposd 42310 cantnfresb 43313 omabs2 43321 naddwordnexlem4 43390 sbgoldbwt 47778 sbgoldbst 47779 nnsum4primesodd 47797 nnsum4primesoddALTV 47798 dignn0flhalflem1 48604 |
| Copyright terms: Public domain | W3C validator |