Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3syld | Structured version Visualization version GIF version |
Description: Triple syllogism deduction. Deduction associated with 3syld 60. (Contributed by Jeff Hankins, 4-Aug-2009.) |
Ref | Expression |
---|---|
3syld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3syld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
3syld.3 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
3syld | ⊢ (𝜑 → (𝜓 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3syld.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 3syld.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
3 | 1, 2 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | 3syld.3 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
5 | 3, 4 | syld 47 | 1 ⊢ (𝜑 → (𝜓 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: oaordi 8339 nnaordi 8411 fineqvlem 8966 dif1enALT 8980 xpfi 9015 rankr1ag 9491 cfslb2n 9955 fin23lem27 10015 gchpwdom 10357 prlem934 10720 axpre-sup 10856 cju 11899 xrub 12975 facavg 13943 mulcn2 15233 o1rlimmul 15256 coprm 16344 rpexp 16355 vdwnnlem3 16626 gexdvds 19104 cnpnei 22323 comppfsc 22591 alexsubALTlem3 23108 alexsubALTlem4 23109 iccntr 23890 cfil3i 24338 bcth3 24400 lgseisenlem2 26429 cusgredg 27694 uspgr2wlkeq 27915 ubthlem1 29133 staddi 30509 stadd3i 30511 addltmulALT 30709 cnre2csqlem 31762 tpr2rico 31764 satffunlem2lem1 33266 mclsax 33431 dfrdg4 34180 segconeq 34239 nn0prpwlem 34438 bj-bary1lem1 35409 poimirlem29 35733 fdc 35830 bfplem2 35908 atexchcvrN 37381 dalem3 37605 cdleme3h 38176 cdleme21ct 38270 oexpreposd 40242 sbgoldbwt 45117 sbgoldbst 45118 nnsum4primesodd 45136 nnsum4primesoddALTV 45137 dignn0flhalflem1 45849 |
Copyright terms: Public domain | W3C validator |