![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3syld | Structured version Visualization version GIF version |
Description: Triple syllogism deduction. Deduction associated with 3syld 60. (Contributed by Jeff Hankins, 4-Aug-2009.) |
Ref | Expression |
---|---|
3syld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3syld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
3syld.3 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
3syld | ⊢ (𝜑 → (𝜓 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3syld.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 3syld.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
3 | 1, 2 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | 3syld.3 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
5 | 3, 4 | syld 47 | 1 ⊢ (𝜑 → (𝜓 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: oaordi 8546 nnaordi 8618 fineqvlem 9262 dif1ennnALT 9277 xpfiOLD 9318 rankr1ag 9797 cfslb2n 10263 fin23lem27 10323 gchpwdom 10665 prlem934 11028 axpre-sup 11164 cju 12208 xrub 13291 facavg 14261 mulcn2 15540 o1rlimmul 15563 coprm 16648 rpexp 16659 vdwnnlem3 16930 gexdvds 19452 cnpnei 22768 comppfsc 23036 alexsubALTlem3 23553 alexsubALTlem4 23554 iccntr 24337 cfil3i 24786 bcth3 24848 lgseisenlem2 26879 cusgredg 28681 uspgr2wlkeq 28903 ubthlem1 30123 staddi 31499 stadd3i 31501 addltmulALT 31699 cnre2csqlem 32890 tpr2rico 32892 satffunlem2lem1 34395 mclsax 34560 dfrdg4 34923 segconeq 34982 nn0prpwlem 35207 bj-bary1lem1 36192 poimirlem29 36517 fdc 36613 bfplem2 36691 atexchcvrN 38311 dalem3 38535 cdleme3h 39106 cdleme21ct 39200 oexpreposd 41212 cantnfresb 42074 omabs2 42082 naddwordnexlem4 42152 sbgoldbwt 46445 sbgoldbst 46446 nnsum4primesodd 46464 nnsum4primesoddALTV 46465 dignn0flhalflem1 47301 |
Copyright terms: Public domain | W3C validator |