| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3syld | Structured version Visualization version GIF version | ||
| Description: Triple syllogism deduction. Deduction associated with 3syld 60. (Contributed by Jeff Hankins, 4-Aug-2009.) |
| Ref | Expression |
|---|---|
| 3syld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3syld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 3syld.3 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| 3syld | ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3syld.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 3syld.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 3 | 1, 2 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 3syld.3 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 5 | 3, 4 | syld 47 | 1 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: oaordi 8461 nnaordi 8533 fineqvlem 9150 dif1ennnALT 9161 rankr1ag 9695 cfslb2n 10159 fin23lem27 10219 gchpwdom 10561 prlem934 10924 axpre-sup 11060 cju 12121 xrub 13211 facavg 14208 mulcn2 15503 o1rlimmul 15526 coprm 16622 rpexp 16633 vdwnnlem3 16909 gexdvds 19496 cnpnei 23179 comppfsc 23447 alexsubALTlem3 23964 alexsubALTlem4 23965 iccntr 24737 cfil3i 25196 bcth3 25258 lgseisenlem2 27314 cusgredg 29402 uspgr2wlkeq 29624 ubthlem1 30850 staddi 32226 stadd3i 32228 addltmulALT 32426 expgt0b 32799 cnre2csqlem 33923 tpr2rico 33925 satffunlem2lem1 35448 mclsax 35613 dfrdg4 35995 segconeq 36054 nn0prpwlem 36366 bj-bary1lem1 37355 poimirlem29 37699 fdc 37795 bfplem2 37873 atexchcvrN 39549 dalem3 39773 cdleme3h 40344 cdleme21ct 40438 oexpreposd 42425 cantnfresb 43427 omabs2 43435 naddwordnexlem4 43504 sbgoldbwt 47887 sbgoldbst 47888 nnsum4primesodd 47906 nnsum4primesoddALTV 47907 dignn0flhalflem1 48726 |
| Copyright terms: Public domain | W3C validator |