| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3syld | Structured version Visualization version GIF version | ||
| Description: Triple syllogism deduction. Deduction associated with 3syld 60. (Contributed by Jeff Hankins, 4-Aug-2009.) |
| Ref | Expression |
|---|---|
| 3syld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3syld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 3syld.3 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| 3syld | ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3syld.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 3syld.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 3 | 1, 2 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 3syld.3 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 5 | 3, 4 | syld 47 | 1 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: oaordi 8513 nnaordi 8585 fineqvlem 9216 dif1ennnALT 9229 xpfiOLD 9277 rankr1ag 9762 cfslb2n 10228 fin23lem27 10288 gchpwdom 10630 prlem934 10993 axpre-sup 11129 cju 12189 xrub 13279 facavg 14273 mulcn2 15569 o1rlimmul 15592 coprm 16688 rpexp 16699 vdwnnlem3 16975 gexdvds 19521 cnpnei 23158 comppfsc 23426 alexsubALTlem3 23943 alexsubALTlem4 23944 iccntr 24717 cfil3i 25176 bcth3 25238 lgseisenlem2 27294 cusgredg 29358 uspgr2wlkeq 29581 ubthlem1 30806 staddi 32182 stadd3i 32184 addltmulALT 32382 expgt0b 32748 cnre2csqlem 33907 tpr2rico 33909 satffunlem2lem1 35398 mclsax 35563 dfrdg4 35946 segconeq 36005 nn0prpwlem 36317 bj-bary1lem1 37306 poimirlem29 37650 fdc 37746 bfplem2 37824 atexchcvrN 39441 dalem3 39665 cdleme3h 40236 cdleme21ct 40330 oexpreposd 42317 cantnfresb 43320 omabs2 43328 naddwordnexlem4 43397 sbgoldbwt 47782 sbgoldbst 47783 nnsum4primesodd 47801 nnsum4primesoddALTV 47802 dignn0flhalflem1 48608 |
| Copyright terms: Public domain | W3C validator |