![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3syld | Structured version Visualization version GIF version |
Description: Triple syllogism deduction. Deduction associated with 3syld 60. (Contributed by Jeff Hankins, 4-Aug-2009.) |
Ref | Expression |
---|---|
3syld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3syld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
3syld.3 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
3syld | ⊢ (𝜑 → (𝜓 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3syld.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 3syld.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
3 | 1, 2 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | 3syld.3 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
5 | 3, 4 | syld 47 | 1 ⊢ (𝜑 → (𝜓 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: oaordi 8602 nnaordi 8674 fineqvlem 9325 dif1ennnALT 9339 xpfiOLD 9387 rankr1ag 9871 cfslb2n 10337 fin23lem27 10397 gchpwdom 10739 prlem934 11102 axpre-sup 11238 cju 12289 xrub 13374 facavg 14350 mulcn2 15642 o1rlimmul 15665 coprm 16758 rpexp 16769 vdwnnlem3 17044 gexdvds 19626 cnpnei 23293 comppfsc 23561 alexsubALTlem3 24078 alexsubALTlem4 24079 iccntr 24862 cfil3i 25322 bcth3 25384 lgseisenlem2 27438 cusgredg 29459 uspgr2wlkeq 29682 ubthlem1 30902 staddi 32278 stadd3i 32280 addltmulALT 32478 expgt0b 32820 cnre2csqlem 33856 tpr2rico 33858 satffunlem2lem1 35372 mclsax 35537 dfrdg4 35915 segconeq 35974 nn0prpwlem 36288 bj-bary1lem1 37277 poimirlem29 37609 fdc 37705 bfplem2 37783 atexchcvrN 39397 dalem3 39621 cdleme3h 40192 cdleme21ct 40286 oexpreposd 42309 cantnfresb 43286 omabs2 43294 naddwordnexlem4 43363 sbgoldbwt 47651 sbgoldbst 47652 nnsum4primesodd 47670 nnsum4primesoddALTV 47671 dignn0flhalflem1 48349 |
Copyright terms: Public domain | W3C validator |