![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3syld | Structured version Visualization version GIF version |
Description: Triple syllogism deduction. Deduction associated with 3syld 60. (Contributed by Jeff Hankins, 4-Aug-2009.) |
Ref | Expression |
---|---|
3syld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3syld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
3syld.3 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
3syld | ⊢ (𝜑 → (𝜓 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3syld.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 3syld.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
3 | 1, 2 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | 3syld.3 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
5 | 3, 4 | syld 47 | 1 ⊢ (𝜑 → (𝜓 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: oaordi 8583 nnaordi 8655 fineqvlem 9296 dif1ennnALT 9309 xpfiOLD 9357 rankr1ag 9840 cfslb2n 10306 fin23lem27 10366 gchpwdom 10708 prlem934 11071 axpre-sup 11207 cju 12260 xrub 13351 facavg 14337 mulcn2 15629 o1rlimmul 15652 coprm 16745 rpexp 16756 vdwnnlem3 17031 gexdvds 19617 cnpnei 23288 comppfsc 23556 alexsubALTlem3 24073 alexsubALTlem4 24074 iccntr 24857 cfil3i 25317 bcth3 25379 lgseisenlem2 27435 cusgredg 29456 uspgr2wlkeq 29679 ubthlem1 30899 staddi 32275 stadd3i 32277 addltmulALT 32475 expgt0b 32823 cnre2csqlem 33871 tpr2rico 33873 satffunlem2lem1 35389 mclsax 35554 dfrdg4 35933 segconeq 35992 nn0prpwlem 36305 bj-bary1lem1 37294 poimirlem29 37636 fdc 37732 bfplem2 37810 atexchcvrN 39423 dalem3 39647 cdleme3h 40218 cdleme21ct 40312 oexpreposd 42336 cantnfresb 43314 omabs2 43322 naddwordnexlem4 43391 sbgoldbwt 47702 sbgoldbst 47703 nnsum4primesodd 47721 nnsum4primesoddALTV 47722 dignn0flhalflem1 48465 |
Copyright terms: Public domain | W3C validator |