Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3syld | Structured version Visualization version GIF version |
Description: Triple syllogism deduction. Deduction associated with 3syld 60. (Contributed by Jeff Hankins, 4-Aug-2009.) |
Ref | Expression |
---|---|
3syld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3syld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
3syld.3 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
3syld | ⊢ (𝜑 → (𝜓 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3syld.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 3syld.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
3 | 1, 2 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | 3syld.3 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
5 | 3, 4 | syld 47 | 1 ⊢ (𝜑 → (𝜓 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: oaordi 8377 nnaordi 8449 fineqvlem 9037 dif1enALT 9050 xpfi 9085 rankr1ag 9560 cfslb2n 10024 fin23lem27 10084 gchpwdom 10426 prlem934 10789 axpre-sup 10925 cju 11969 xrub 13046 facavg 14015 mulcn2 15305 o1rlimmul 15328 coprm 16416 rpexp 16427 vdwnnlem3 16698 gexdvds 19189 cnpnei 22415 comppfsc 22683 alexsubALTlem3 23200 alexsubALTlem4 23201 iccntr 23984 cfil3i 24433 bcth3 24495 lgseisenlem2 26524 cusgredg 27791 uspgr2wlkeq 28013 ubthlem1 29232 staddi 30608 stadd3i 30610 addltmulALT 30808 cnre2csqlem 31860 tpr2rico 31862 satffunlem2lem1 33366 mclsax 33531 dfrdg4 34253 segconeq 34312 nn0prpwlem 34511 bj-bary1lem1 35482 poimirlem29 35806 fdc 35903 bfplem2 35981 atexchcvrN 37454 dalem3 37678 cdleme3h 38249 cdleme21ct 38343 oexpreposd 40321 sbgoldbwt 45229 sbgoldbst 45230 nnsum4primesodd 45248 nnsum4primesoddALTV 45249 dignn0flhalflem1 45961 |
Copyright terms: Public domain | W3C validator |