![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3syld | Structured version Visualization version GIF version |
Description: Triple syllogism deduction. Deduction associated with 3syld 60. (Contributed by Jeff Hankins, 4-Aug-2009.) |
Ref | Expression |
---|---|
3syld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3syld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
3syld.3 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
Ref | Expression |
---|---|
3syld | ⊢ (𝜑 → (𝜓 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3syld.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 3syld.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
3 | 1, 2 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | 3syld.3 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
5 | 3, 4 | syld 47 | 1 ⊢ (𝜑 → (𝜓 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: oaordi 7975 nnaordi 8047 fineqvlem 8529 dif1en 8548 xpfi 8586 rankr1ag 9027 cfslb2n 9490 fin23lem27 9550 gchpwdom 9892 prlem934 10255 axpre-sup 10391 cju 11437 xrub 12524 facavg 13479 mulcn2 14816 o1rlimmul 14839 coprm 15914 rpexp 15923 vdwnnlem3 16192 gexdvds 18473 cnpnei 21579 comppfsc 21847 alexsubALTlem3 22364 alexsubALTlem4 22365 iccntr 23135 cfil3i 23578 bcth3 23640 lgseisenlem2 25657 cusgredg 26912 uspgr2wlkeq 27133 ubthlem1 28428 staddi 29807 stadd3i 29809 addltmulALT 30007 cnre2csqlem 30797 tpr2rico 30799 mclsax 32336 dfrdg4 32933 segconeq 32992 nn0prpwlem 33191 bj-bary1lem1 34040 poimirlem29 34362 fdc 34462 bfplem2 34543 atexchcvrN 36021 dalem3 36245 cdleme3h 36816 cdleme21ct 36910 oexpreposd 38611 sbgoldbwt 43311 sbgoldbst 43312 nnsum4primesodd 43330 nnsum4primesoddALTV 43331 dignn0flhalflem1 44044 |
Copyright terms: Public domain | W3C validator |