| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3syld | Structured version Visualization version GIF version | ||
| Description: Triple syllogism deduction. Deduction associated with 3syld 60. (Contributed by Jeff Hankins, 4-Aug-2009.) |
| Ref | Expression |
|---|---|
| 3syld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3syld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 3syld.3 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| Ref | Expression |
|---|---|
| 3syld | ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3syld.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 3syld.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 3 | 1, 2 | syld 47 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 3syld.3 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 5 | 3, 4 | syld 47 | 1 ⊢ (𝜑 → (𝜓 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: oaordi 8558 nnaordi 8630 fineqvlem 9270 dif1ennnALT 9283 xpfiOLD 9331 rankr1ag 9816 cfslb2n 10282 fin23lem27 10342 gchpwdom 10684 prlem934 11047 axpre-sup 11183 cju 12236 xrub 13328 facavg 14319 mulcn2 15612 o1rlimmul 15635 coprm 16730 rpexp 16741 vdwnnlem3 17017 gexdvds 19565 cnpnei 23202 comppfsc 23470 alexsubALTlem3 23987 alexsubALTlem4 23988 iccntr 24761 cfil3i 25221 bcth3 25283 lgseisenlem2 27339 cusgredg 29403 uspgr2wlkeq 29626 ubthlem1 30851 staddi 32227 stadd3i 32229 addltmulALT 32427 expgt0b 32795 cnre2csqlem 33941 tpr2rico 33943 satffunlem2lem1 35426 mclsax 35591 dfrdg4 35969 segconeq 36028 nn0prpwlem 36340 bj-bary1lem1 37329 poimirlem29 37673 fdc 37769 bfplem2 37847 atexchcvrN 39459 dalem3 39683 cdleme3h 40254 cdleme21ct 40348 oexpreposd 42371 cantnfresb 43348 omabs2 43356 naddwordnexlem4 43425 sbgoldbwt 47791 sbgoldbst 47792 nnsum4primesodd 47810 nnsum4primesoddALTV 47811 dignn0flhalflem1 48595 |
| Copyright terms: Public domain | W3C validator |