MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pockthg Structured version   Visualization version   GIF version

Theorem pockthg 16884
Description: The generalized Pocklington's theorem. If 𝑁 − 1 = 𝐴 · 𝐵 where 𝐵 < 𝐴, then 𝑁 is prime if and only if for every prime factor 𝑝 of 𝐴, there is an 𝑥 such that 𝑥↑(𝑁 − 1) = 1( mod 𝑁) and gcd (𝑥↑((𝑁 − 1) / 𝑝) − 1, 𝑁) = 1. (Contributed by Mario Carneiro, 2-Mar-2014.)
Hypotheses
Ref Expression
pockthg.1 (𝜑𝐴 ∈ ℕ)
pockthg.2 (𝜑𝐵 ∈ ℕ)
pockthg.3 (𝜑𝐵 < 𝐴)
pockthg.4 (𝜑𝑁 = ((𝐴 · 𝐵) + 1))
pockthg.5 (𝜑 → ∀𝑝 ∈ ℙ (𝑝𝐴 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1)))
Assertion
Ref Expression
pockthg (𝜑𝑁 ∈ ℙ)
Distinct variable groups:   𝑥,𝑝,𝑁   𝐴,𝑝,𝑥   𝜑,𝑝,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑝)

Proof of Theorem pockthg
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 pockthg.4 . . 3 (𝜑𝑁 = ((𝐴 · 𝐵) + 1))
2 pockthg.1 . . . . . . 7 (𝜑𝐴 ∈ ℕ)
3 pockthg.2 . . . . . . 7 (𝜑𝐵 ∈ ℕ)
42, 3nnmulcld 12246 . . . . . 6 (𝜑 → (𝐴 · 𝐵) ∈ ℕ)
5 nnuz 12843 . . . . . 6 ℕ = (ℤ‘1)
64, 5eleqtrdi 2839 . . . . 5 (𝜑 → (𝐴 · 𝐵) ∈ (ℤ‘1))
7 eluzp1p1 12828 . . . . 5 ((𝐴 · 𝐵) ∈ (ℤ‘1) → ((𝐴 · 𝐵) + 1) ∈ (ℤ‘(1 + 1)))
86, 7syl 17 . . . 4 (𝜑 → ((𝐴 · 𝐵) + 1) ∈ (ℤ‘(1 + 1)))
9 df-2 12256 . . . . 5 2 = (1 + 1)
109fveq2i 6864 . . . 4 (ℤ‘2) = (ℤ‘(1 + 1))
118, 10eleqtrrdi 2840 . . 3 (𝜑 → ((𝐴 · 𝐵) + 1) ∈ (ℤ‘2))
121, 11eqeltrd 2829 . 2 (𝜑𝑁 ∈ (ℤ‘2))
13 eluzelre 12811 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
1412, 13syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
1514adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝑁 ∈ ℝ)
162nnred 12208 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
1716resqcld 14097 . . . . . . . 8 (𝜑 → (𝐴↑2) ∈ ℝ)
1817adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝐴↑2) ∈ ℝ)
19 prmnn 16651 . . . . . . . . . 10 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
2019ad2antrl 728 . . . . . . . . 9 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝑞 ∈ ℕ)
2120nnred 12208 . . . . . . . 8 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝑞 ∈ ℝ)
2221resqcld 14097 . . . . . . 7 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝑞↑2) ∈ ℝ)
23 pockthg.3 . . . . . . . . . . 11 (𝜑𝐵 < 𝐴)
243nnred 12208 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
252nngt0d 12242 . . . . . . . . . . . 12 (𝜑 → 0 < 𝐴)
26 ltmul2 12040 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐵 < 𝐴 ↔ (𝐴 · 𝐵) < (𝐴 · 𝐴)))
2724, 16, 16, 25, 26syl112anc 1376 . . . . . . . . . . 11 (𝜑 → (𝐵 < 𝐴 ↔ (𝐴 · 𝐵) < (𝐴 · 𝐴)))
2823, 27mpbid 232 . . . . . . . . . 10 (𝜑 → (𝐴 · 𝐵) < (𝐴 · 𝐴))
292, 2nnmulcld 12246 . . . . . . . . . . 11 (𝜑 → (𝐴 · 𝐴) ∈ ℕ)
30 nnltp1le 12597 . . . . . . . . . . 11 (((𝐴 · 𝐵) ∈ ℕ ∧ (𝐴 · 𝐴) ∈ ℕ) → ((𝐴 · 𝐵) < (𝐴 · 𝐴) ↔ ((𝐴 · 𝐵) + 1) ≤ (𝐴 · 𝐴)))
314, 29, 30syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐴 · 𝐵) < (𝐴 · 𝐴) ↔ ((𝐴 · 𝐵) + 1) ≤ (𝐴 · 𝐴)))
3228, 31mpbid 232 . . . . . . . . 9 (𝜑 → ((𝐴 · 𝐵) + 1) ≤ (𝐴 · 𝐴))
332nncnd 12209 . . . . . . . . . 10 (𝜑𝐴 ∈ ℂ)
3433sqvald 14115 . . . . . . . . 9 (𝜑 → (𝐴↑2) = (𝐴 · 𝐴))
3532, 1, 343brtr4d 5142 . . . . . . . 8 (𝜑𝑁 ≤ (𝐴↑2))
3635adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝑁 ≤ (𝐴↑2))
37 pockthg.5 . . . . . . . . . . . . 13 (𝜑 → ∀𝑝 ∈ ℙ (𝑝𝐴 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1)))
3837adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → ∀𝑝 ∈ ℙ (𝑝𝐴 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1)))
39 prmnn 16651 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
4039ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → 𝑝 ∈ ℕ)
4140nncnd 12209 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → 𝑝 ∈ ℂ)
4241exp1d 14113 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → (𝑝↑1) = 𝑝)
43 nnge1 12221 . . . . . . . . . . . . . . . . . . 19 ((𝑝 pCnt 𝐴) ∈ ℕ → 1 ≤ (𝑝 pCnt 𝐴))
4443ad2antll 729 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → 1 ≤ (𝑝 pCnt 𝐴))
45 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → 𝑝 ∈ ℙ)
462nnzd 12563 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴 ∈ ℤ)
4746ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → 𝐴 ∈ ℤ)
48 1nn0 12465 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℕ0
4948a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → 1 ∈ ℕ0)
50 pcdvdsb 16847 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 1 ∈ ℕ0) → (1 ≤ (𝑝 pCnt 𝐴) ↔ (𝑝↑1) ∥ 𝐴))
5145, 47, 49, 50syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → (1 ≤ (𝑝 pCnt 𝐴) ↔ (𝑝↑1) ∥ 𝐴))
5244, 51mpbid 232 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → (𝑝↑1) ∥ 𝐴)
5342, 52eqbrtrrd 5134 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → 𝑝𝐴)
54 simpl1 1192 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → 𝜑)
5554, 2syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → 𝐴 ∈ ℕ)
5654, 3syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → 𝐵 ∈ ℕ)
5754, 23syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → 𝐵 < 𝐴)
5854, 1syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → 𝑁 = ((𝐴 · 𝐵) + 1))
59 simpl2l 1227 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → 𝑞 ∈ ℙ)
60 simpl2r 1228 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → 𝑞𝑁)
61 simpl3l 1229 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → 𝑝 ∈ ℙ)
62 simpl3r 1230 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → (𝑝 pCnt 𝐴) ∈ ℕ)
63 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → 𝑥 ∈ ℤ)
64 simprrl 780 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → ((𝑥↑(𝑁 − 1)) mod 𝑁) = 1)
65 simprrr 781 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1)
6655, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65pockthlem 16883 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1)))
6766rexlimdvaa 3136 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → (∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1))))
68673expa 1118 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → (∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1))))
6953, 68embantd 59 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → ((𝑝𝐴 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1)) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1))))
7069expr 456 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) ∈ ℕ → ((𝑝𝐴 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1)) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1)))))
71 id 22 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
72 prmuz2 16673 . . . . . . . . . . . . . . . . . . . 20 (𝑞 ∈ ℙ → 𝑞 ∈ (ℤ‘2))
73 uz2m1nn 12889 . . . . . . . . . . . . . . . . . . . 20 (𝑞 ∈ (ℤ‘2) → (𝑞 − 1) ∈ ℕ)
7472, 73syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑞 ∈ ℙ → (𝑞 − 1) ∈ ℕ)
7574ad2antrl 728 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝑞 − 1) ∈ ℕ)
76 pccl 16827 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℙ ∧ (𝑞 − 1) ∈ ℕ) → (𝑝 pCnt (𝑞 − 1)) ∈ ℕ0)
7771, 75, 76syl2anr 597 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝑞 − 1)) ∈ ℕ0)
7877nn0ge0d 12513 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ 𝑝 ∈ ℙ) → 0 ≤ (𝑝 pCnt (𝑞 − 1)))
79 breq1 5113 . . . . . . . . . . . . . . . 16 ((𝑝 pCnt 𝐴) = 0 → ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1)) ↔ 0 ≤ (𝑝 pCnt (𝑞 − 1))))
8078, 79syl5ibrcom 247 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) = 0 → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1))))
8180a1dd 50 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) = 0 → ((𝑝𝐴 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1)) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1)))))
82 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
832ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ)
8482, 83pccld 16828 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
85 elnn0 12451 . . . . . . . . . . . . . . 15 ((𝑝 pCnt 𝐴) ∈ ℕ0 ↔ ((𝑝 pCnt 𝐴) ∈ ℕ ∨ (𝑝 pCnt 𝐴) = 0))
8684, 85sylib 218 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) ∈ ℕ ∨ (𝑝 pCnt 𝐴) = 0))
8770, 81, 86mpjaod 860 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝𝐴 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1)) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1))))
8887ralimdva 3146 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (∀𝑝 ∈ ℙ (𝑝𝐴 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1)) → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1))))
8938, 88mpd 15 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1)))
9075nnzd 12563 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝑞 − 1) ∈ ℤ)
91 pc2dvds 16857 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (𝑞 − 1) ∈ ℤ) → (𝐴 ∥ (𝑞 − 1) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1))))
9246, 90, 91syl2an2r 685 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝐴 ∥ (𝑞 − 1) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1))))
9389, 92mpbird 257 . . . . . . . . . 10 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝐴 ∥ (𝑞 − 1))
94 dvdsle 16287 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝑞 − 1) ∈ ℕ) → (𝐴 ∥ (𝑞 − 1) → 𝐴 ≤ (𝑞 − 1)))
9546, 75, 94syl2an2r 685 . . . . . . . . . 10 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝐴 ∥ (𝑞 − 1) → 𝐴 ≤ (𝑞 − 1)))
9693, 95mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝐴 ≤ (𝑞 − 1))
972nnnn0d 12510 . . . . . . . . . 10 (𝜑𝐴 ∈ ℕ0)
9820nnnn0d 12510 . . . . . . . . . 10 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝑞 ∈ ℕ0)
99 nn0ltlem1 12601 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑞 ∈ ℕ0) → (𝐴 < 𝑞𝐴 ≤ (𝑞 − 1)))
10097, 98, 99syl2an2r 685 . . . . . . . . 9 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝐴 < 𝑞𝐴 ≤ (𝑞 − 1)))
10196, 100mpbird 257 . . . . . . . 8 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝐴 < 𝑞)
10216adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝐴 ∈ ℝ)
10397nn0ge0d 12513 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐴)
104103adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 0 ≤ 𝐴)
10598nn0ge0d 12513 . . . . . . . . 9 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 0 ≤ 𝑞)
106102, 21, 104, 105lt2sqd 14228 . . . . . . . 8 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝐴 < 𝑞 ↔ (𝐴↑2) < (𝑞↑2)))
107101, 106mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝐴↑2) < (𝑞↑2))
10815, 18, 22, 36, 107lelttrd 11339 . . . . . 6 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝑁 < (𝑞↑2))
10915, 22ltnled 11328 . . . . . 6 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝑁 < (𝑞↑2) ↔ ¬ (𝑞↑2) ≤ 𝑁))
110108, 109mpbid 232 . . . . 5 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → ¬ (𝑞↑2) ≤ 𝑁)
111110expr 456 . . . 4 ((𝜑𝑞 ∈ ℙ) → (𝑞𝑁 → ¬ (𝑞↑2) ≤ 𝑁))
112111con2d 134 . . 3 ((𝜑𝑞 ∈ ℙ) → ((𝑞↑2) ≤ 𝑁 → ¬ 𝑞𝑁))
113112ralrimiva 3126 . 2 (𝜑 → ∀𝑞 ∈ ℙ ((𝑞↑2) ≤ 𝑁 → ¬ 𝑞𝑁))
114 isprm5 16684 . 2 (𝑁 ∈ ℙ ↔ (𝑁 ∈ (ℤ‘2) ∧ ∀𝑞 ∈ ℙ ((𝑞↑2) ≤ 𝑁 → ¬ 𝑞𝑁)))
11512, 113, 114sylanbrc 583 1 (𝜑𝑁 ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054   class class class wbr 5110  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  0cn0 12449  cz 12536  cuz 12800   mod cmo 13838  cexp 14033  cdvds 16229   gcd cgcd 16471  cprime 16648   pCnt cpc 16814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472  df-prm 16649  df-odz 16742  df-phi 16743  df-pc 16815
This theorem is referenced by:  pockthi  16885  proththd  47619
  Copyright terms: Public domain W3C validator