MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pockthg Structured version   Visualization version   GIF version

Theorem pockthg 16836
Description: The generalized Pocklington's theorem. If 𝑁 − 1 = 𝐴 · 𝐵 where 𝐵 < 𝐴, then 𝑁 is prime if and only if for every prime factor 𝑝 of 𝐴, there is an 𝑥 such that 𝑥↑(𝑁 − 1) = 1( mod 𝑁) and gcd (𝑥↑((𝑁 − 1) / 𝑝) − 1, 𝑁) = 1. (Contributed by Mario Carneiro, 2-Mar-2014.)
Hypotheses
Ref Expression
pockthg.1 (𝜑𝐴 ∈ ℕ)
pockthg.2 (𝜑𝐵 ∈ ℕ)
pockthg.3 (𝜑𝐵 < 𝐴)
pockthg.4 (𝜑𝑁 = ((𝐴 · 𝐵) + 1))
pockthg.5 (𝜑 → ∀𝑝 ∈ ℙ (𝑝𝐴 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1)))
Assertion
Ref Expression
pockthg (𝜑𝑁 ∈ ℙ)
Distinct variable groups:   𝑥,𝑝,𝑁   𝐴,𝑝,𝑥   𝜑,𝑝,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑝)

Proof of Theorem pockthg
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 pockthg.4 . . 3 (𝜑𝑁 = ((𝐴 · 𝐵) + 1))
2 pockthg.1 . . . . . . 7 (𝜑𝐴 ∈ ℕ)
3 pockthg.2 . . . . . . 7 (𝜑𝐵 ∈ ℕ)
42, 3nnmulcld 12199 . . . . . 6 (𝜑 → (𝐴 · 𝐵) ∈ ℕ)
5 nnuz 12796 . . . . . 6 ℕ = (ℤ‘1)
64, 5eleqtrdi 2838 . . . . 5 (𝜑 → (𝐴 · 𝐵) ∈ (ℤ‘1))
7 eluzp1p1 12781 . . . . 5 ((𝐴 · 𝐵) ∈ (ℤ‘1) → ((𝐴 · 𝐵) + 1) ∈ (ℤ‘(1 + 1)))
86, 7syl 17 . . . 4 (𝜑 → ((𝐴 · 𝐵) + 1) ∈ (ℤ‘(1 + 1)))
9 df-2 12209 . . . . 5 2 = (1 + 1)
109fveq2i 6829 . . . 4 (ℤ‘2) = (ℤ‘(1 + 1))
118, 10eleqtrrdi 2839 . . 3 (𝜑 → ((𝐴 · 𝐵) + 1) ∈ (ℤ‘2))
121, 11eqeltrd 2828 . 2 (𝜑𝑁 ∈ (ℤ‘2))
13 eluzelre 12764 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
1412, 13syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
1514adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝑁 ∈ ℝ)
162nnred 12161 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
1716resqcld 14050 . . . . . . . 8 (𝜑 → (𝐴↑2) ∈ ℝ)
1817adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝐴↑2) ∈ ℝ)
19 prmnn 16603 . . . . . . . . . 10 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
2019ad2antrl 728 . . . . . . . . 9 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝑞 ∈ ℕ)
2120nnred 12161 . . . . . . . 8 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝑞 ∈ ℝ)
2221resqcld 14050 . . . . . . 7 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝑞↑2) ∈ ℝ)
23 pockthg.3 . . . . . . . . . . 11 (𝜑𝐵 < 𝐴)
243nnred 12161 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
252nngt0d 12195 . . . . . . . . . . . 12 (𝜑 → 0 < 𝐴)
26 ltmul2 11993 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐵 < 𝐴 ↔ (𝐴 · 𝐵) < (𝐴 · 𝐴)))
2724, 16, 16, 25, 26syl112anc 1376 . . . . . . . . . . 11 (𝜑 → (𝐵 < 𝐴 ↔ (𝐴 · 𝐵) < (𝐴 · 𝐴)))
2823, 27mpbid 232 . . . . . . . . . 10 (𝜑 → (𝐴 · 𝐵) < (𝐴 · 𝐴))
292, 2nnmulcld 12199 . . . . . . . . . . 11 (𝜑 → (𝐴 · 𝐴) ∈ ℕ)
30 nnltp1le 12550 . . . . . . . . . . 11 (((𝐴 · 𝐵) ∈ ℕ ∧ (𝐴 · 𝐴) ∈ ℕ) → ((𝐴 · 𝐵) < (𝐴 · 𝐴) ↔ ((𝐴 · 𝐵) + 1) ≤ (𝐴 · 𝐴)))
314, 29, 30syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐴 · 𝐵) < (𝐴 · 𝐴) ↔ ((𝐴 · 𝐵) + 1) ≤ (𝐴 · 𝐴)))
3228, 31mpbid 232 . . . . . . . . 9 (𝜑 → ((𝐴 · 𝐵) + 1) ≤ (𝐴 · 𝐴))
332nncnd 12162 . . . . . . . . . 10 (𝜑𝐴 ∈ ℂ)
3433sqvald 14068 . . . . . . . . 9 (𝜑 → (𝐴↑2) = (𝐴 · 𝐴))
3532, 1, 343brtr4d 5127 . . . . . . . 8 (𝜑𝑁 ≤ (𝐴↑2))
3635adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝑁 ≤ (𝐴↑2))
37 pockthg.5 . . . . . . . . . . . . 13 (𝜑 → ∀𝑝 ∈ ℙ (𝑝𝐴 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1)))
3837adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → ∀𝑝 ∈ ℙ (𝑝𝐴 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1)))
39 prmnn 16603 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
4039ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → 𝑝 ∈ ℕ)
4140nncnd 12162 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → 𝑝 ∈ ℂ)
4241exp1d 14066 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → (𝑝↑1) = 𝑝)
43 nnge1 12174 . . . . . . . . . . . . . . . . . . 19 ((𝑝 pCnt 𝐴) ∈ ℕ → 1 ≤ (𝑝 pCnt 𝐴))
4443ad2antll 729 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → 1 ≤ (𝑝 pCnt 𝐴))
45 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → 𝑝 ∈ ℙ)
462nnzd 12516 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴 ∈ ℤ)
4746ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → 𝐴 ∈ ℤ)
48 1nn0 12418 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℕ0
4948a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → 1 ∈ ℕ0)
50 pcdvdsb 16799 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 1 ∈ ℕ0) → (1 ≤ (𝑝 pCnt 𝐴) ↔ (𝑝↑1) ∥ 𝐴))
5145, 47, 49, 50syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → (1 ≤ (𝑝 pCnt 𝐴) ↔ (𝑝↑1) ∥ 𝐴))
5244, 51mpbid 232 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → (𝑝↑1) ∥ 𝐴)
5342, 52eqbrtrrd 5119 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → 𝑝𝐴)
54 simpl1 1192 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → 𝜑)
5554, 2syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → 𝐴 ∈ ℕ)
5654, 3syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → 𝐵 ∈ ℕ)
5754, 23syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → 𝐵 < 𝐴)
5854, 1syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → 𝑁 = ((𝐴 · 𝐵) + 1))
59 simpl2l 1227 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → 𝑞 ∈ ℙ)
60 simpl2r 1228 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → 𝑞𝑁)
61 simpl3l 1229 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → 𝑝 ∈ ℙ)
62 simpl3r 1230 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → (𝑝 pCnt 𝐴) ∈ ℕ)
63 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → 𝑥 ∈ ℤ)
64 simprrl 780 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → ((𝑥↑(𝑁 − 1)) mod 𝑁) = 1)
65 simprrr 781 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1)
6655, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65pockthlem 16835 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1)))
6766rexlimdvaa 3131 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → (∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1))))
68673expa 1118 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → (∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1))))
6953, 68embantd 59 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → ((𝑝𝐴 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1)) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1))))
7069expr 456 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) ∈ ℕ → ((𝑝𝐴 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1)) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1)))))
71 id 22 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
72 prmuz2 16625 . . . . . . . . . . . . . . . . . . . 20 (𝑞 ∈ ℙ → 𝑞 ∈ (ℤ‘2))
73 uz2m1nn 12842 . . . . . . . . . . . . . . . . . . . 20 (𝑞 ∈ (ℤ‘2) → (𝑞 − 1) ∈ ℕ)
7472, 73syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑞 ∈ ℙ → (𝑞 − 1) ∈ ℕ)
7574ad2antrl 728 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝑞 − 1) ∈ ℕ)
76 pccl 16779 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℙ ∧ (𝑞 − 1) ∈ ℕ) → (𝑝 pCnt (𝑞 − 1)) ∈ ℕ0)
7771, 75, 76syl2anr 597 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝑞 − 1)) ∈ ℕ0)
7877nn0ge0d 12466 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ 𝑝 ∈ ℙ) → 0 ≤ (𝑝 pCnt (𝑞 − 1)))
79 breq1 5098 . . . . . . . . . . . . . . . 16 ((𝑝 pCnt 𝐴) = 0 → ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1)) ↔ 0 ≤ (𝑝 pCnt (𝑞 − 1))))
8078, 79syl5ibrcom 247 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) = 0 → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1))))
8180a1dd 50 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) = 0 → ((𝑝𝐴 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1)) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1)))))
82 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
832ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ)
8482, 83pccld 16780 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
85 elnn0 12404 . . . . . . . . . . . . . . 15 ((𝑝 pCnt 𝐴) ∈ ℕ0 ↔ ((𝑝 pCnt 𝐴) ∈ ℕ ∨ (𝑝 pCnt 𝐴) = 0))
8684, 85sylib 218 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) ∈ ℕ ∨ (𝑝 pCnt 𝐴) = 0))
8770, 81, 86mpjaod 860 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝𝐴 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1)) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1))))
8887ralimdva 3141 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (∀𝑝 ∈ ℙ (𝑝𝐴 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1)) → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1))))
8938, 88mpd 15 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1)))
9075nnzd 12516 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝑞 − 1) ∈ ℤ)
91 pc2dvds 16809 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (𝑞 − 1) ∈ ℤ) → (𝐴 ∥ (𝑞 − 1) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1))))
9246, 90, 91syl2an2r 685 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝐴 ∥ (𝑞 − 1) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1))))
9389, 92mpbird 257 . . . . . . . . . 10 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝐴 ∥ (𝑞 − 1))
94 dvdsle 16239 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝑞 − 1) ∈ ℕ) → (𝐴 ∥ (𝑞 − 1) → 𝐴 ≤ (𝑞 − 1)))
9546, 75, 94syl2an2r 685 . . . . . . . . . 10 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝐴 ∥ (𝑞 − 1) → 𝐴 ≤ (𝑞 − 1)))
9693, 95mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝐴 ≤ (𝑞 − 1))
972nnnn0d 12463 . . . . . . . . . 10 (𝜑𝐴 ∈ ℕ0)
9820nnnn0d 12463 . . . . . . . . . 10 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝑞 ∈ ℕ0)
99 nn0ltlem1 12554 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑞 ∈ ℕ0) → (𝐴 < 𝑞𝐴 ≤ (𝑞 − 1)))
10097, 98, 99syl2an2r 685 . . . . . . . . 9 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝐴 < 𝑞𝐴 ≤ (𝑞 − 1)))
10196, 100mpbird 257 . . . . . . . 8 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝐴 < 𝑞)
10216adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝐴 ∈ ℝ)
10397nn0ge0d 12466 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐴)
104103adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 0 ≤ 𝐴)
10598nn0ge0d 12466 . . . . . . . . 9 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 0 ≤ 𝑞)
106102, 21, 104, 105lt2sqd 14181 . . . . . . . 8 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝐴 < 𝑞 ↔ (𝐴↑2) < (𝑞↑2)))
107101, 106mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝐴↑2) < (𝑞↑2))
10815, 18, 22, 36, 107lelttrd 11292 . . . . . 6 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝑁 < (𝑞↑2))
10915, 22ltnled 11281 . . . . . 6 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝑁 < (𝑞↑2) ↔ ¬ (𝑞↑2) ≤ 𝑁))
110108, 109mpbid 232 . . . . 5 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → ¬ (𝑞↑2) ≤ 𝑁)
111110expr 456 . . . 4 ((𝜑𝑞 ∈ ℙ) → (𝑞𝑁 → ¬ (𝑞↑2) ≤ 𝑁))
112111con2d 134 . . 3 ((𝜑𝑞 ∈ ℙ) → ((𝑞↑2) ≤ 𝑁 → ¬ 𝑞𝑁))
113112ralrimiva 3121 . 2 (𝜑 → ∀𝑞 ∈ ℙ ((𝑞↑2) ≤ 𝑁 → ¬ 𝑞𝑁))
114 isprm5 16636 . 2 (𝑁 ∈ ℙ ↔ (𝑁 ∈ (ℤ‘2) ∧ ∀𝑞 ∈ ℙ ((𝑞↑2) ≤ 𝑁 → ¬ 𝑞𝑁)))
11512, 113, 114sylanbrc 583 1 (𝜑𝑁 ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5095  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033   < clt 11168  cle 11169  cmin 11365   / cdiv 11795  cn 12146  2c2 12201  0cn0 12402  cz 12489  cuz 12753   mod cmo 13791  cexp 13986  cdvds 16181   gcd cgcd 16423  cprime 16600   pCnt cpc 16766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-dvds 16182  df-gcd 16424  df-prm 16601  df-odz 16694  df-phi 16695  df-pc 16767
This theorem is referenced by:  pockthi  16837  proththd  47602
  Copyright terms: Public domain W3C validator