MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exprmfct Structured version   Visualization version   GIF version

Theorem exprmfct 16724
Description: Every integer greater than or equal to 2 has a prime factor. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
exprmfct (𝑁 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑁)
Distinct variable group:   𝑁,𝑝

Proof of Theorem exprmfct
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluz2nn 12906 . 2 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2 eleq1 2821 . . . 4 (𝑥 = 1 → (𝑥 ∈ (ℤ‘2) ↔ 1 ∈ (ℤ‘2)))
32imbi1d 341 . . 3 (𝑥 = 1 → ((𝑥 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥) ↔ (1 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥)))
4 eleq1 2821 . . . 4 (𝑥 = 𝑦 → (𝑥 ∈ (ℤ‘2) ↔ 𝑦 ∈ (ℤ‘2)))
5 breq2 5127 . . . . 5 (𝑥 = 𝑦 → (𝑝𝑥𝑝𝑦))
65rexbidv 3166 . . . 4 (𝑥 = 𝑦 → (∃𝑝 ∈ ℙ 𝑝𝑥 ↔ ∃𝑝 ∈ ℙ 𝑝𝑦))
74, 6imbi12d 344 . . 3 (𝑥 = 𝑦 → ((𝑥 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥) ↔ (𝑦 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑦)))
8 eleq1 2821 . . . 4 (𝑥 = 𝑧 → (𝑥 ∈ (ℤ‘2) ↔ 𝑧 ∈ (ℤ‘2)))
9 breq2 5127 . . . . 5 (𝑥 = 𝑧 → (𝑝𝑥𝑝𝑧))
109rexbidv 3166 . . . 4 (𝑥 = 𝑧 → (∃𝑝 ∈ ℙ 𝑝𝑥 ↔ ∃𝑝 ∈ ℙ 𝑝𝑧))
118, 10imbi12d 344 . . 3 (𝑥 = 𝑧 → ((𝑥 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥) ↔ (𝑧 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑧)))
12 eleq1 2821 . . . 4 (𝑥 = (𝑦 · 𝑧) → (𝑥 ∈ (ℤ‘2) ↔ (𝑦 · 𝑧) ∈ (ℤ‘2)))
13 breq2 5127 . . . . 5 (𝑥 = (𝑦 · 𝑧) → (𝑝𝑥𝑝 ∥ (𝑦 · 𝑧)))
1413rexbidv 3166 . . . 4 (𝑥 = (𝑦 · 𝑧) → (∃𝑝 ∈ ℙ 𝑝𝑥 ↔ ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧)))
1512, 14imbi12d 344 . . 3 (𝑥 = (𝑦 · 𝑧) → ((𝑥 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥) ↔ ((𝑦 · 𝑧) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧))))
16 eleq1 2821 . . . 4 (𝑥 = 𝑁 → (𝑥 ∈ (ℤ‘2) ↔ 𝑁 ∈ (ℤ‘2)))
17 breq2 5127 . . . . 5 (𝑥 = 𝑁 → (𝑝𝑥𝑝𝑁))
1817rexbidv 3166 . . . 4 (𝑥 = 𝑁 → (∃𝑝 ∈ ℙ 𝑝𝑥 ↔ ∃𝑝 ∈ ℙ 𝑝𝑁))
1916, 18imbi12d 344 . . 3 (𝑥 = 𝑁 → ((𝑥 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥) ↔ (𝑁 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑁)))
20 1m1e0 12320 . . . . 5 (1 − 1) = 0
21 uz2m1nn 12947 . . . . 5 (1 ∈ (ℤ‘2) → (1 − 1) ∈ ℕ)
2220, 21eqeltrrid 2838 . . . 4 (1 ∈ (ℤ‘2) → 0 ∈ ℕ)
23 0nnn 12284 . . . . 5 ¬ 0 ∈ ℕ
2423pm2.21i 119 . . . 4 (0 ∈ ℕ → ∃𝑝 ∈ ℙ 𝑝𝑥)
2522, 24syl 17 . . 3 (1 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥)
26 prmz 16695 . . . . . 6 (𝑥 ∈ ℙ → 𝑥 ∈ ℤ)
27 iddvds 16290 . . . . . 6 (𝑥 ∈ ℤ → 𝑥𝑥)
2826, 27syl 17 . . . . 5 (𝑥 ∈ ℙ → 𝑥𝑥)
29 breq1 5126 . . . . . 6 (𝑝 = 𝑥 → (𝑝𝑥𝑥𝑥))
3029rspcev 3605 . . . . 5 ((𝑥 ∈ ℙ ∧ 𝑥𝑥) → ∃𝑝 ∈ ℙ 𝑝𝑥)
3128, 30mpdan 687 . . . 4 (𝑥 ∈ ℙ → ∃𝑝 ∈ ℙ 𝑝𝑥)
3231a1d 25 . . 3 (𝑥 ∈ ℙ → (𝑥 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥))
33 simpl 482 . . . . . 6 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → 𝑦 ∈ (ℤ‘2))
34 eluzelz 12870 . . . . . . . . . 10 (𝑦 ∈ (ℤ‘2) → 𝑦 ∈ ℤ)
3534ad2antrr 726 . . . . . . . . 9 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑦 ∈ ℤ)
36 eluzelz 12870 . . . . . . . . . 10 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℤ)
3736ad2antlr 727 . . . . . . . . 9 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑧 ∈ ℤ)
38 dvdsmul1 16298 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 𝑦 ∥ (𝑦 · 𝑧))
3935, 37, 38syl2anc 584 . . . . . . . 8 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑦 ∥ (𝑦 · 𝑧))
40 prmz 16695 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
4140adantl 481 . . . . . . . . 9 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
4235, 37zmulcld 12711 . . . . . . . . 9 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → (𝑦 · 𝑧) ∈ ℤ)
43 dvdstr 16314 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ (𝑦 · 𝑧) ∈ ℤ) → ((𝑝𝑦𝑦 ∥ (𝑦 · 𝑧)) → 𝑝 ∥ (𝑦 · 𝑧)))
4441, 35, 42, 43syl3anc 1372 . . . . . . . 8 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → ((𝑝𝑦𝑦 ∥ (𝑦 · 𝑧)) → 𝑝 ∥ (𝑦 · 𝑧)))
4539, 44mpan2d 694 . . . . . . 7 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → (𝑝𝑦𝑝 ∥ (𝑦 · 𝑧)))
4645reximdva 3155 . . . . . 6 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (∃𝑝 ∈ ℙ 𝑝𝑦 → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧)))
4733, 46embantd 59 . . . . 5 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝑦 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑦) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧)))
4847a1dd 50 . . . 4 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝑦 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑦) → ((𝑦 · 𝑧) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧))))
4948adantrd 491 . . 3 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (((𝑦 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑦) ∧ (𝑧 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑧)) → ((𝑦 · 𝑧) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧))))
503, 7, 11, 15, 19, 25, 32, 49prmind 16706 . 2 (𝑁 ∈ ℕ → (𝑁 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑁))
511, 50mpcom 38 1 (𝑁 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wrex 3059   class class class wbr 5123  cfv 6541  (class class class)co 7413  0cc0 11137  1c1 11138   · cmul 11142  cmin 11474  cn 12248  2c2 12303  cz 12596  cuz 12860  cdvds 16273  cprime 16691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-z 12597  df-uz 12861  df-rp 13017  df-fz 13530  df-seq 14025  df-exp 14085  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-dvds 16274  df-prm 16692
This theorem is referenced by:  prmdvdsfz  16725  isprm5  16727  maxprmfct  16729  rpexp  16742  prmdvdsncoprmbd  16747  pc2dvds  16900  oddprmdvds  16924  prmunb  16935  ablfacrplem  20054  muval1  27113  musum  27171  lgsne0  27316  dchrisum0flb  27491  frgrreggt1  30341  nn0prpwlem  36298  aks5  42180  prmdvdsfmtnof1lem1  47544  prmdvdsfmtnof  47546
  Copyright terms: Public domain W3C validator