MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exprmfct Structured version   Visualization version   GIF version

Theorem exprmfct 16035
Description: Every integer greater than or equal to 2 has a prime factor. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
exprmfct (𝑁 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑁)
Distinct variable group:   𝑁,𝑝

Proof of Theorem exprmfct
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluz2nn 12270 . 2 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2 eleq1 2903 . . . 4 (𝑥 = 1 → (𝑥 ∈ (ℤ‘2) ↔ 1 ∈ (ℤ‘2)))
32imbi1d 345 . . 3 (𝑥 = 1 → ((𝑥 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥) ↔ (1 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥)))
4 eleq1 2903 . . . 4 (𝑥 = 𝑦 → (𝑥 ∈ (ℤ‘2) ↔ 𝑦 ∈ (ℤ‘2)))
5 breq2 5051 . . . . 5 (𝑥 = 𝑦 → (𝑝𝑥𝑝𝑦))
65rexbidv 3289 . . . 4 (𝑥 = 𝑦 → (∃𝑝 ∈ ℙ 𝑝𝑥 ↔ ∃𝑝 ∈ ℙ 𝑝𝑦))
74, 6imbi12d 348 . . 3 (𝑥 = 𝑦 → ((𝑥 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥) ↔ (𝑦 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑦)))
8 eleq1 2903 . . . 4 (𝑥 = 𝑧 → (𝑥 ∈ (ℤ‘2) ↔ 𝑧 ∈ (ℤ‘2)))
9 breq2 5051 . . . . 5 (𝑥 = 𝑧 → (𝑝𝑥𝑝𝑧))
109rexbidv 3289 . . . 4 (𝑥 = 𝑧 → (∃𝑝 ∈ ℙ 𝑝𝑥 ↔ ∃𝑝 ∈ ℙ 𝑝𝑧))
118, 10imbi12d 348 . . 3 (𝑥 = 𝑧 → ((𝑥 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥) ↔ (𝑧 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑧)))
12 eleq1 2903 . . . 4 (𝑥 = (𝑦 · 𝑧) → (𝑥 ∈ (ℤ‘2) ↔ (𝑦 · 𝑧) ∈ (ℤ‘2)))
13 breq2 5051 . . . . 5 (𝑥 = (𝑦 · 𝑧) → (𝑝𝑥𝑝 ∥ (𝑦 · 𝑧)))
1413rexbidv 3289 . . . 4 (𝑥 = (𝑦 · 𝑧) → (∃𝑝 ∈ ℙ 𝑝𝑥 ↔ ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧)))
1512, 14imbi12d 348 . . 3 (𝑥 = (𝑦 · 𝑧) → ((𝑥 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥) ↔ ((𝑦 · 𝑧) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧))))
16 eleq1 2903 . . . 4 (𝑥 = 𝑁 → (𝑥 ∈ (ℤ‘2) ↔ 𝑁 ∈ (ℤ‘2)))
17 breq2 5051 . . . . 5 (𝑥 = 𝑁 → (𝑝𝑥𝑝𝑁))
1817rexbidv 3289 . . . 4 (𝑥 = 𝑁 → (∃𝑝 ∈ ℙ 𝑝𝑥 ↔ ∃𝑝 ∈ ℙ 𝑝𝑁))
1916, 18imbi12d 348 . . 3 (𝑥 = 𝑁 → ((𝑥 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥) ↔ (𝑁 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑁)))
20 1m1e0 11695 . . . . 5 (1 − 1) = 0
21 uz2m1nn 12309 . . . . 5 (1 ∈ (ℤ‘2) → (1 − 1) ∈ ℕ)
2220, 21eqeltrrid 2921 . . . 4 (1 ∈ (ℤ‘2) → 0 ∈ ℕ)
23 0nnn 11659 . . . . 5 ¬ 0 ∈ ℕ
2423pm2.21i 119 . . . 4 (0 ∈ ℕ → ∃𝑝 ∈ ℙ 𝑝𝑥)
2522, 24syl 17 . . 3 (1 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥)
26 prmz 16006 . . . . . 6 (𝑥 ∈ ℙ → 𝑥 ∈ ℤ)
27 iddvds 15612 . . . . . 6 (𝑥 ∈ ℤ → 𝑥𝑥)
2826, 27syl 17 . . . . 5 (𝑥 ∈ ℙ → 𝑥𝑥)
29 breq1 5050 . . . . . 6 (𝑝 = 𝑥 → (𝑝𝑥𝑥𝑥))
3029rspcev 3608 . . . . 5 ((𝑥 ∈ ℙ ∧ 𝑥𝑥) → ∃𝑝 ∈ ℙ 𝑝𝑥)
3128, 30mpdan 686 . . . 4 (𝑥 ∈ ℙ → ∃𝑝 ∈ ℙ 𝑝𝑥)
3231a1d 25 . . 3 (𝑥 ∈ ℙ → (𝑥 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥))
33 simpl 486 . . . . . 6 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → 𝑦 ∈ (ℤ‘2))
34 eluzelz 12239 . . . . . . . . . 10 (𝑦 ∈ (ℤ‘2) → 𝑦 ∈ ℤ)
3534ad2antrr 725 . . . . . . . . 9 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑦 ∈ ℤ)
36 eluzelz 12239 . . . . . . . . . 10 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℤ)
3736ad2antlr 726 . . . . . . . . 9 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑧 ∈ ℤ)
38 dvdsmul1 15620 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 𝑦 ∥ (𝑦 · 𝑧))
3935, 37, 38syl2anc 587 . . . . . . . 8 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑦 ∥ (𝑦 · 𝑧))
40 prmz 16006 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
4140adantl 485 . . . . . . . . 9 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
4235, 37zmulcld 12079 . . . . . . . . 9 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → (𝑦 · 𝑧) ∈ ℤ)
43 dvdstr 15635 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ (𝑦 · 𝑧) ∈ ℤ) → ((𝑝𝑦𝑦 ∥ (𝑦 · 𝑧)) → 𝑝 ∥ (𝑦 · 𝑧)))
4441, 35, 42, 43syl3anc 1368 . . . . . . . 8 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → ((𝑝𝑦𝑦 ∥ (𝑦 · 𝑧)) → 𝑝 ∥ (𝑦 · 𝑧)))
4539, 44mpan2d 693 . . . . . . 7 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → (𝑝𝑦𝑝 ∥ (𝑦 · 𝑧)))
4645reximdva 3266 . . . . . 6 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (∃𝑝 ∈ ℙ 𝑝𝑦 → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧)))
4733, 46embantd 59 . . . . 5 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝑦 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑦) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧)))
4847a1dd 50 . . . 4 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝑦 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑦) → ((𝑦 · 𝑧) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧))))
4948adantrd 495 . . 3 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (((𝑦 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑦) ∧ (𝑧 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑧)) → ((𝑦 · 𝑧) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧))))
503, 7, 11, 15, 19, 25, 32, 49prmind 16017 . 2 (𝑁 ∈ ℕ → (𝑁 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑁))
511, 50mpcom 38 1 (𝑁 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wrex 3133   class class class wbr 5047  cfv 6336  (class class class)co 7138  0cc0 10522  1c1 10523   · cmul 10527  cmin 10855  cn 11623  2c2 11678  cz 11967  cuz 12229  cdvds 15596  cprime 16002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599  ax-pre-sup 10600
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-1st 7672  df-2nd 7673  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-div 11283  df-nn 11624  df-2 11686  df-3 11687  df-n0 11884  df-z 11968  df-uz 12230  df-rp 12376  df-fz 12884  df-seq 13363  df-exp 13424  df-cj 14447  df-re 14448  df-im 14449  df-sqrt 14583  df-abs 14584  df-dvds 15597  df-prm 16003
This theorem is referenced by:  prmdvdsfz  16036  isprm5  16038  maxprmfct  16040  rpexp  16051  pc2dvds  16202  oddprmdvds  16226  prmunb  16237  ablfacrplem  19176  muval1  25707  musum  25765  lgsne0  25908  dchrisum0flb  26083  frgrreggt1  28167  nn0prpwlem  33688  prmdvdsfmtnof1lem1  43943  prmdvdsfmtnof  43945
  Copyright terms: Public domain W3C validator