MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exprmfct Structured version   Visualization version   GIF version

Theorem exprmfct 16633
Description: Every integer greater than or equal to 2 has a prime factor. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 20-Jun-2015.)
Assertion
Ref Expression
exprmfct (𝑁 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑁)
Distinct variable group:   𝑁,𝑝

Proof of Theorem exprmfct
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluz2nn 12807 . 2 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2 eleq1 2816 . . . 4 (𝑥 = 1 → (𝑥 ∈ (ℤ‘2) ↔ 1 ∈ (ℤ‘2)))
32imbi1d 341 . . 3 (𝑥 = 1 → ((𝑥 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥) ↔ (1 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥)))
4 eleq1 2816 . . . 4 (𝑥 = 𝑦 → (𝑥 ∈ (ℤ‘2) ↔ 𝑦 ∈ (ℤ‘2)))
5 breq2 5099 . . . . 5 (𝑥 = 𝑦 → (𝑝𝑥𝑝𝑦))
65rexbidv 3153 . . . 4 (𝑥 = 𝑦 → (∃𝑝 ∈ ℙ 𝑝𝑥 ↔ ∃𝑝 ∈ ℙ 𝑝𝑦))
74, 6imbi12d 344 . . 3 (𝑥 = 𝑦 → ((𝑥 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥) ↔ (𝑦 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑦)))
8 eleq1 2816 . . . 4 (𝑥 = 𝑧 → (𝑥 ∈ (ℤ‘2) ↔ 𝑧 ∈ (ℤ‘2)))
9 breq2 5099 . . . . 5 (𝑥 = 𝑧 → (𝑝𝑥𝑝𝑧))
109rexbidv 3153 . . . 4 (𝑥 = 𝑧 → (∃𝑝 ∈ ℙ 𝑝𝑥 ↔ ∃𝑝 ∈ ℙ 𝑝𝑧))
118, 10imbi12d 344 . . 3 (𝑥 = 𝑧 → ((𝑥 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥) ↔ (𝑧 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑧)))
12 eleq1 2816 . . . 4 (𝑥 = (𝑦 · 𝑧) → (𝑥 ∈ (ℤ‘2) ↔ (𝑦 · 𝑧) ∈ (ℤ‘2)))
13 breq2 5099 . . . . 5 (𝑥 = (𝑦 · 𝑧) → (𝑝𝑥𝑝 ∥ (𝑦 · 𝑧)))
1413rexbidv 3153 . . . 4 (𝑥 = (𝑦 · 𝑧) → (∃𝑝 ∈ ℙ 𝑝𝑥 ↔ ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧)))
1512, 14imbi12d 344 . . 3 (𝑥 = (𝑦 · 𝑧) → ((𝑥 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥) ↔ ((𝑦 · 𝑧) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧))))
16 eleq1 2816 . . . 4 (𝑥 = 𝑁 → (𝑥 ∈ (ℤ‘2) ↔ 𝑁 ∈ (ℤ‘2)))
17 breq2 5099 . . . . 5 (𝑥 = 𝑁 → (𝑝𝑥𝑝𝑁))
1817rexbidv 3153 . . . 4 (𝑥 = 𝑁 → (∃𝑝 ∈ ℙ 𝑝𝑥 ↔ ∃𝑝 ∈ ℙ 𝑝𝑁))
1916, 18imbi12d 344 . . 3 (𝑥 = 𝑁 → ((𝑥 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥) ↔ (𝑁 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑁)))
20 1m1e0 12218 . . . . 5 (1 − 1) = 0
21 uz2m1nn 12842 . . . . 5 (1 ∈ (ℤ‘2) → (1 − 1) ∈ ℕ)
2220, 21eqeltrrid 2833 . . . 4 (1 ∈ (ℤ‘2) → 0 ∈ ℕ)
23 0nnn 12182 . . . . 5 ¬ 0 ∈ ℕ
2423pm2.21i 119 . . . 4 (0 ∈ ℕ → ∃𝑝 ∈ ℙ 𝑝𝑥)
2522, 24syl 17 . . 3 (1 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥)
26 prmz 16604 . . . . . 6 (𝑥 ∈ ℙ → 𝑥 ∈ ℤ)
27 iddvds 16198 . . . . . 6 (𝑥 ∈ ℤ → 𝑥𝑥)
2826, 27syl 17 . . . . 5 (𝑥 ∈ ℙ → 𝑥𝑥)
29 breq1 5098 . . . . . 6 (𝑝 = 𝑥 → (𝑝𝑥𝑥𝑥))
3029rspcev 3579 . . . . 5 ((𝑥 ∈ ℙ ∧ 𝑥𝑥) → ∃𝑝 ∈ ℙ 𝑝𝑥)
3128, 30mpdan 687 . . . 4 (𝑥 ∈ ℙ → ∃𝑝 ∈ ℙ 𝑝𝑥)
3231a1d 25 . . 3 (𝑥 ∈ ℙ → (𝑥 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑥))
33 simpl 482 . . . . . 6 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → 𝑦 ∈ (ℤ‘2))
34 eluzelz 12763 . . . . . . . . . 10 (𝑦 ∈ (ℤ‘2) → 𝑦 ∈ ℤ)
3534ad2antrr 726 . . . . . . . . 9 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑦 ∈ ℤ)
36 eluzelz 12763 . . . . . . . . . 10 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℤ)
3736ad2antlr 727 . . . . . . . . 9 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑧 ∈ ℤ)
38 dvdsmul1 16206 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → 𝑦 ∥ (𝑦 · 𝑧))
3935, 37, 38syl2anc 584 . . . . . . . 8 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑦 ∥ (𝑦 · 𝑧))
40 prmz 16604 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
4140adantl 481 . . . . . . . . 9 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
4235, 37zmulcld 12604 . . . . . . . . 9 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → (𝑦 · 𝑧) ∈ ℤ)
43 dvdstr 16223 . . . . . . . . 9 ((𝑝 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ (𝑦 · 𝑧) ∈ ℤ) → ((𝑝𝑦𝑦 ∥ (𝑦 · 𝑧)) → 𝑝 ∥ (𝑦 · 𝑧)))
4441, 35, 42, 43syl3anc 1373 . . . . . . . 8 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → ((𝑝𝑦𝑦 ∥ (𝑦 · 𝑧)) → 𝑝 ∥ (𝑦 · 𝑧)))
4539, 44mpan2d 694 . . . . . . 7 (((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ 𝑝 ∈ ℙ) → (𝑝𝑦𝑝 ∥ (𝑦 · 𝑧)))
4645reximdva 3142 . . . . . 6 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (∃𝑝 ∈ ℙ 𝑝𝑦 → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧)))
4733, 46embantd 59 . . . . 5 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝑦 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑦) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧)))
4847a1dd 50 . . . 4 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝑦 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑦) → ((𝑦 · 𝑧) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧))))
4948adantrd 491 . . 3 ((𝑦 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (((𝑦 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑦) ∧ (𝑧 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑧)) → ((𝑦 · 𝑧) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝑦 · 𝑧))))
503, 7, 11, 15, 19, 25, 32, 49prmind 16615 . 2 (𝑁 ∈ ℕ → (𝑁 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑁))
511, 50mpcom 38 1 (𝑁 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5095  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029   · cmul 11033  cmin 11365  cn 12146  2c2 12201  cz 12489  cuz 12753  cdvds 16181  cprime 16600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-dvds 16182  df-prm 16601
This theorem is referenced by:  prmdvdsfz  16634  isprm5  16636  maxprmfct  16638  rpexp  16651  prmdvdsncoprmbd  16656  pc2dvds  16809  oddprmdvds  16833  prmunb  16844  ablfacrplem  19964  muval1  27059  musum  27117  lgsne0  27262  dchrisum0flb  27437  frgrreggt1  30355  cos9thpiminplylem2  33749  nn0prpwlem  36295  aks5  42177  prmdvdsfmtnof1lem1  47569  prmdvdsfmtnof  47571
  Copyright terms: Public domain W3C validator