MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  findcard2d Structured version   Visualization version   GIF version

Theorem findcard2d 9206
Description: Deduction version of findcard2 9204. (Contributed by SO, 16-Jul-2018.)
Hypotheses
Ref Expression
findcard2d.ch (𝑥 = ∅ → (𝜓𝜒))
findcard2d.th (𝑥 = 𝑦 → (𝜓𝜃))
findcard2d.ta (𝑥 = (𝑦 ∪ {𝑧}) → (𝜓𝜏))
findcard2d.et (𝑥 = 𝐴 → (𝜓𝜂))
findcard2d.z (𝜑𝜒)
findcard2d.i ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝜃𝜏))
findcard2d.a (𝜑𝐴 ∈ Fin)
Assertion
Ref Expression
findcard2d (𝜑𝜂)
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝜓,𝑦,𝑧   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜂,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦,𝑧)   𝜃(𝑦,𝑧)   𝜏(𝑦,𝑧)   𝜂(𝑦,𝑧)

Proof of Theorem findcard2d
StepHypRef Expression
1 ssid 4006 . 2 𝐴𝐴
2 findcard2d.a . . . 4 (𝜑𝐴 ∈ Fin)
32adantr 480 . . 3 ((𝜑𝐴𝐴) → 𝐴 ∈ Fin)
4 sseq1 4009 . . . . . 6 (𝑥 = ∅ → (𝑥𝐴 ↔ ∅ ⊆ 𝐴))
54anbi2d 630 . . . . 5 (𝑥 = ∅ → ((𝜑𝑥𝐴) ↔ (𝜑 ∧ ∅ ⊆ 𝐴)))
6 findcard2d.ch . . . . 5 (𝑥 = ∅ → (𝜓𝜒))
75, 6imbi12d 344 . . . 4 (𝑥 = ∅ → (((𝜑𝑥𝐴) → 𝜓) ↔ ((𝜑 ∧ ∅ ⊆ 𝐴) → 𝜒)))
8 sseq1 4009 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
98anbi2d 630 . . . . 5 (𝑥 = 𝑦 → ((𝜑𝑥𝐴) ↔ (𝜑𝑦𝐴)))
10 findcard2d.th . . . . 5 (𝑥 = 𝑦 → (𝜓𝜃))
119, 10imbi12d 344 . . . 4 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → 𝜓) ↔ ((𝜑𝑦𝐴) → 𝜃)))
12 sseq1 4009 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥𝐴 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴))
1312anbi2d 630 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝜑𝑥𝐴) ↔ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)))
14 findcard2d.ta . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (𝜓𝜏))
1513, 14imbi12d 344 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (((𝜑𝑥𝐴) → 𝜓) ↔ ((𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → 𝜏)))
16 sseq1 4009 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐴𝐴𝐴))
1716anbi2d 630 . . . . 5 (𝑥 = 𝐴 → ((𝜑𝑥𝐴) ↔ (𝜑𝐴𝐴)))
18 findcard2d.et . . . . 5 (𝑥 = 𝐴 → (𝜓𝜂))
1917, 18imbi12d 344 . . . 4 (𝑥 = 𝐴 → (((𝜑𝑥𝐴) → 𝜓) ↔ ((𝜑𝐴𝐴) → 𝜂)))
20 findcard2d.z . . . . 5 (𝜑𝜒)
2120adantr 480 . . . 4 ((𝜑 ∧ ∅ ⊆ 𝐴) → 𝜒)
22 simprl 771 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝜑)
23 simprr 773 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
2423unssad 4193 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝑦𝐴)
2522, 24jca 511 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝜑𝑦𝐴))
26 id 22 . . . . . . . . . . 11 ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
27 vsnid 4663 . . . . . . . . . . . 12 𝑧 ∈ {𝑧}
28 elun2 4183 . . . . . . . . . . . 12 (𝑧 ∈ {𝑧} → 𝑧 ∈ (𝑦 ∪ {𝑧}))
2927, 28mp1i 13 . . . . . . . . . . 11 ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑧 ∈ (𝑦 ∪ {𝑧}))
3026, 29sseldd 3984 . . . . . . . . . 10 ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑧𝐴)
3130ad2antll 729 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧𝐴)
32 simplr 769 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → ¬ 𝑧𝑦)
3331, 32eldifd 3962 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → 𝑧 ∈ (𝐴𝑦))
34 findcard2d.i . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝜃𝜏))
3522, 24, 33, 34syl12anc 837 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (𝜃𝜏))
3625, 35embantd 59 . . . . . 6 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) → (((𝜑𝑦𝐴) → 𝜃) → 𝜏))
3736ex 412 . . . . 5 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (((𝜑𝑦𝐴) → 𝜃) → 𝜏)))
3837com23 86 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (((𝜑𝑦𝐴) → 𝜃) → ((𝜑 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → 𝜏)))
397, 11, 15, 19, 21, 38findcard2s 9205 . . 3 (𝐴 ∈ Fin → ((𝜑𝐴𝐴) → 𝜂))
403, 39mpcom 38 . 2 ((𝜑𝐴𝐴) → 𝜂)
411, 40mpan2 691 1 (𝜑𝜂)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  cdif 3948  cun 3949  wss 3951  c0 4333  {csn 4626  Fincfn 8985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-om 7888  df-en 8986  df-fin 8989
This theorem is referenced by:  fprodmodd  16033  sumeven  16424  sumodd  16425  maducoeval2  22646  madugsum  22649  elrgspnlem4  33249  rprmdvdsprod  33562  constrextdg2lem  33789  esum2dlem  34093  fiunelcarsg  34318  carsgclctunlem1  34319  evl1gprodd  42118  idomnnzgmulnz  42134  deg1gprod  42141  fiiuncl  45070  mpct  45206  fprodexp  45609  fprodabs2  45610  mccl  45613  fprodcn  45615  fprodcncf  45915  dvnprodlem3  45963  sge0iunmptlemfi  46428  hoidmvle  46615
  Copyright terms: Public domain W3C validator