![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oppreqg | Structured version Visualization version GIF version |
Description: Group coset equivalence relation for the opposite ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
Ref | Expression |
---|---|
oppreqg.o | ⊢ 𝑂 = (oppr‘𝑅) |
oppreqg.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
oppreqg | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ⊆ 𝐵) → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppreqg.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
2 | eqid 2731 | . . 3 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
3 | eqid 2731 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
4 | eqid 2731 | . . 3 ⊢ (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼) | |
5 | 1, 2, 3, 4 | eqgfval 19099 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ⊆ 𝐵) → (𝑅 ~QG 𝐼) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg‘𝑅)‘𝑥)(+g‘𝑅)𝑦) ∈ 𝐼)}) |
6 | oppreqg.o | . . . . 5 ⊢ 𝑂 = (oppr‘𝑅) | |
7 | 6 | fvexi 6905 | . . . 4 ⊢ 𝑂 ∈ V |
8 | 6, 1 | opprbas 20239 | . . . . 5 ⊢ 𝐵 = (Base‘𝑂) |
9 | 6, 2 | opprneg 20249 | . . . . 5 ⊢ (invg‘𝑅) = (invg‘𝑂) |
10 | 6, 3 | oppradd 20241 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑂) |
11 | eqid 2731 | . . . . 5 ⊢ (𝑂 ~QG 𝐼) = (𝑂 ~QG 𝐼) | |
12 | 8, 9, 10, 11 | eqgfval 19099 | . . . 4 ⊢ ((𝑂 ∈ V ∧ 𝐼 ⊆ 𝐵) → (𝑂 ~QG 𝐼) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg‘𝑅)‘𝑥)(+g‘𝑅)𝑦) ∈ 𝐼)}) |
13 | 7, 12 | mpan 687 | . . 3 ⊢ (𝐼 ⊆ 𝐵 → (𝑂 ~QG 𝐼) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg‘𝑅)‘𝑥)(+g‘𝑅)𝑦) ∈ 𝐼)}) |
14 | 13 | adantl 481 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ⊆ 𝐵) → (𝑂 ~QG 𝐼) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg‘𝑅)‘𝑥)(+g‘𝑅)𝑦) ∈ 𝐼)}) |
15 | 5, 14 | eqtr4d 2774 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ⊆ 𝐵) → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ⊆ wss 3948 {cpr 4630 {copab 5210 ‘cfv 6543 (class class class)co 7412 Basecbs 17151 +gcplusg 17204 invgcminusg 18862 ~QG cqg 19045 opprcoppr 20231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-tpos 8217 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-plusg 17217 df-mulr 17218 df-0g 17394 df-minusg 18865 df-eqg 19048 df-oppr 20232 |
This theorem is referenced by: opprqusbas 33042 opprqusplusg 33043 opprqusmulr 33045 qsdrngi 33049 |
Copyright terms: Public domain | W3C validator |