Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppreqg Structured version   Visualization version   GIF version

Theorem oppreqg 32507
Description: Group coset equivalence relation for the opposite ring. (Contributed by Thierry Arnoux, 9-Mar-2025.)
Hypotheses
Ref Expression
oppreqg.o 𝑂 = (oppr𝑅)
oppreqg.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
oppreqg ((𝑅𝑉𝐼𝐵) → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼))

Proof of Theorem oppreqg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppreqg.b . . 3 𝐵 = (Base‘𝑅)
2 eqid 2732 . . 3 (invg𝑅) = (invg𝑅)
3 eqid 2732 . . 3 (+g𝑅) = (+g𝑅)
4 eqid 2732 . . 3 (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼)
51, 2, 3, 4eqgfval 19030 . 2 ((𝑅𝑉𝐼𝐵) → (𝑅 ~QG 𝐼) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝑅)‘𝑥)(+g𝑅)𝑦) ∈ 𝐼)})
6 oppreqg.o . . . . 5 𝑂 = (oppr𝑅)
76fvexi 6893 . . . 4 𝑂 ∈ V
86, 1opprbas 20111 . . . . 5 𝐵 = (Base‘𝑂)
96, 2opprneg 20119 . . . . 5 (invg𝑅) = (invg𝑂)
106, 3oppradd 20113 . . . . 5 (+g𝑅) = (+g𝑂)
11 eqid 2732 . . . . 5 (𝑂 ~QG 𝐼) = (𝑂 ~QG 𝐼)
128, 9, 10, 11eqgfval 19030 . . . 4 ((𝑂 ∈ V ∧ 𝐼𝐵) → (𝑂 ~QG 𝐼) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝑅)‘𝑥)(+g𝑅)𝑦) ∈ 𝐼)})
137, 12mpan 688 . . 3 (𝐼𝐵 → (𝑂 ~QG 𝐼) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝑅)‘𝑥)(+g𝑅)𝑦) ∈ 𝐼)})
1413adantl 482 . 2 ((𝑅𝑉𝐼𝐵) → (𝑂 ~QG 𝐼) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg𝑅)‘𝑥)(+g𝑅)𝑦) ∈ 𝐼)})
155, 14eqtr4d 2775 1 ((𝑅𝑉𝐼𝐵) → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  wss 3945  {cpr 4625  {copab 5204  cfv 6533  (class class class)co 7394  Basecbs 17128  +gcplusg 17181  invgcminusg 18797   ~QG cqg 18976  opprcoppr 20103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7840  df-2nd 7960  df-tpos 8195  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-er 8688  df-en 8925  df-dom 8926  df-sdom 8927  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-nn 12197  df-2 12259  df-3 12260  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17129  df-plusg 17194  df-mulr 17195  df-0g 17371  df-minusg 18800  df-eqg 18979  df-oppr 20104
This theorem is referenced by:  opprqusbas  32512  opprqusplusg  32513  opprqusmulr  32515  qsdrngi  32519
  Copyright terms: Public domain W3C validator