| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppreqg | Structured version Visualization version GIF version | ||
| Description: Group coset equivalence relation for the opposite ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| oppreqg.o | ⊢ 𝑂 = (oppr‘𝑅) |
| oppreqg.b | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| oppreqg | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ⊆ 𝐵) → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppreqg.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2729 | . . 3 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
| 3 | eqid 2729 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 4 | eqid 2729 | . . 3 ⊢ (𝑅 ~QG 𝐼) = (𝑅 ~QG 𝐼) | |
| 5 | 1, 2, 3, 4 | eqgfval 19074 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ⊆ 𝐵) → (𝑅 ~QG 𝐼) = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg‘𝑅)‘𝑥)(+g‘𝑅)𝑦) ∈ 𝐼)}) |
| 6 | oppreqg.o | . . . . 5 ⊢ 𝑂 = (oppr‘𝑅) | |
| 7 | 6 | fvexi 6840 | . . . 4 ⊢ 𝑂 ∈ V |
| 8 | 6, 1 | opprbas 20247 | . . . . 5 ⊢ 𝐵 = (Base‘𝑂) |
| 9 | 6, 2 | opprneg 20255 | . . . . 5 ⊢ (invg‘𝑅) = (invg‘𝑂) |
| 10 | 6, 3 | oppradd 20248 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑂) |
| 11 | eqid 2729 | . . . . 5 ⊢ (𝑂 ~QG 𝐼) = (𝑂 ~QG 𝐼) | |
| 12 | 8, 9, 10, 11 | eqgfval 19074 | . . . 4 ⊢ ((𝑂 ∈ V ∧ 𝐼 ⊆ 𝐵) → (𝑂 ~QG 𝐼) = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg‘𝑅)‘𝑥)(+g‘𝑅)𝑦) ∈ 𝐼)}) |
| 13 | 7, 12 | mpan 690 | . . 3 ⊢ (𝐼 ⊆ 𝐵 → (𝑂 ~QG 𝐼) = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg‘𝑅)‘𝑥)(+g‘𝑅)𝑦) ∈ 𝐼)}) |
| 14 | 13 | adantl 481 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ⊆ 𝐵) → (𝑂 ~QG 𝐼) = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (((invg‘𝑅)‘𝑥)(+g‘𝑅)𝑦) ∈ 𝐼)}) |
| 15 | 5, 14 | eqtr4d 2767 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ⊆ 𝐵) → (𝑅 ~QG 𝐼) = (𝑂 ~QG 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 {cpr 4581 {copab 5157 ‘cfv 6486 (class class class)co 7353 Basecbs 17139 +gcplusg 17180 invgcminusg 18832 ~QG cqg 19020 opprcoppr 20240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-3 12211 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-plusg 17193 df-mulr 17194 df-0g 17364 df-minusg 18835 df-eqg 19023 df-oppr 20241 |
| This theorem is referenced by: opprqusbas 33444 opprqusplusg 33445 opprqusmulr 33447 qsdrngi 33451 |
| Copyright terms: Public domain | W3C validator |