Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismtyima Structured version   Visualization version   GIF version

Theorem ismtyima 37765
Description: The image of a ball under an isometry is another ball. (Contributed by Jeff Madsen, 31-Jan-2014.)
Assertion
Ref Expression
ismtyima (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → (𝐹 “ (𝑃(ball‘𝑀)𝑅)) = ((𝐹𝑃)(ball‘𝑁)𝑅))

Proof of Theorem ismtyima
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 6102 . . . . 5 (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ⊆ ran 𝐹
2 isismty 37763 . . . . . . . . . 10 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))))
32biimp3a 1469 . . . . . . . . 9 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))))
43adantr 480 . . . . . . . 8 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))))
54simpld 494 . . . . . . 7 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → 𝐹:𝑋1-1-onto𝑌)
6 f1of 6864 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋𝑌)
75, 6syl 17 . . . . . 6 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → 𝐹:𝑋𝑌)
87frnd 6757 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → ran 𝐹𝑌)
91, 8sstrid 4020 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ⊆ 𝑌)
109sseld 4007 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → (𝑥 ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) → 𝑥𝑌))
11 simpl2 1192 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → 𝑁 ∈ (∞Met‘𝑌))
12 simprl 770 . . . . . 6 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → 𝑃𝑋)
13 ffvelcdm 7117 . . . . . 6 ((𝐹:𝑋𝑌𝑃𝑋) → (𝐹𝑃) ∈ 𝑌)
147, 12, 13syl2anc 583 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → (𝐹𝑃) ∈ 𝑌)
15 simprr 772 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → 𝑅 ∈ ℝ*)
16 blssm 24451 . . . . 5 ((𝑁 ∈ (∞Met‘𝑌) ∧ (𝐹𝑃) ∈ 𝑌𝑅 ∈ ℝ*) → ((𝐹𝑃)(ball‘𝑁)𝑅) ⊆ 𝑌)
1711, 14, 15, 16syl3anc 1371 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → ((𝐹𝑃)(ball‘𝑁)𝑅) ⊆ 𝑌)
1817sseld 4007 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → (𝑥 ∈ ((𝐹𝑃)(ball‘𝑁)𝑅) → 𝑥𝑌))
19 simpl1 1191 . . . . . . . . 9 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → 𝑀 ∈ (∞Met‘𝑋))
2019adantr 480 . . . . . . . 8 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → 𝑀 ∈ (∞Met‘𝑋))
21 simplrr 777 . . . . . . . 8 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → 𝑅 ∈ ℝ*)
22 simplrl 776 . . . . . . . 8 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → 𝑃𝑋)
23 f1ocnv 6876 . . . . . . . . . 10 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
24 f1of 6864 . . . . . . . . . 10 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
255, 23, 243syl 18 . . . . . . . . 9 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → 𝐹:𝑌𝑋)
26 ffvelcdm 7117 . . . . . . . . 9 ((𝐹:𝑌𝑋𝑥𝑌) → (𝐹𝑥) ∈ 𝑋)
2725, 26sylan 579 . . . . . . . 8 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → (𝐹𝑥) ∈ 𝑋)
28 elbl2 24423 . . . . . . . 8 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋 ∧ (𝐹𝑥) ∈ 𝑋)) → ((𝐹𝑥) ∈ (𝑃(ball‘𝑀)𝑅) ↔ (𝑃𝑀(𝐹𝑥)) < 𝑅))
2920, 21, 22, 27, 28syl22anc 838 . . . . . . 7 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → ((𝐹𝑥) ∈ (𝑃(ball‘𝑀)𝑅) ↔ (𝑃𝑀(𝐹𝑥)) < 𝑅))
304simprd 495 . . . . . . . . . . 11 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))
31 oveq1 7457 . . . . . . . . . . . . . 14 (𝑥 = 𝑃 → (𝑥𝑀𝑦) = (𝑃𝑀𝑦))
32 fveq2 6922 . . . . . . . . . . . . . . 15 (𝑥 = 𝑃 → (𝐹𝑥) = (𝐹𝑃))
3332oveq1d 7465 . . . . . . . . . . . . . 14 (𝑥 = 𝑃 → ((𝐹𝑥)𝑁(𝐹𝑦)) = ((𝐹𝑃)𝑁(𝐹𝑦)))
3431, 33eqeq12d 2756 . . . . . . . . . . . . 13 (𝑥 = 𝑃 → ((𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)) ↔ (𝑃𝑀𝑦) = ((𝐹𝑃)𝑁(𝐹𝑦))))
35 oveq2 7458 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑥) → (𝑃𝑀𝑦) = (𝑃𝑀(𝐹𝑥)))
36 fveq2 6922 . . . . . . . . . . . . . . 15 (𝑦 = (𝐹𝑥) → (𝐹𝑦) = (𝐹‘(𝐹𝑥)))
3736oveq2d 7466 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑥) → ((𝐹𝑃)𝑁(𝐹𝑦)) = ((𝐹𝑃)𝑁(𝐹‘(𝐹𝑥))))
3835, 37eqeq12d 2756 . . . . . . . . . . . . 13 (𝑦 = (𝐹𝑥) → ((𝑃𝑀𝑦) = ((𝐹𝑃)𝑁(𝐹𝑦)) ↔ (𝑃𝑀(𝐹𝑥)) = ((𝐹𝑃)𝑁(𝐹‘(𝐹𝑥)))))
3934, 38rspc2v 3646 . . . . . . . . . . . 12 ((𝑃𝑋 ∧ (𝐹𝑥) ∈ 𝑋) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)) → (𝑃𝑀(𝐹𝑥)) = ((𝐹𝑃)𝑁(𝐹‘(𝐹𝑥)))))
4039impancom 451 . . . . . . . . . . 11 ((𝑃𝑋 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) → ((𝐹𝑥) ∈ 𝑋 → (𝑃𝑀(𝐹𝑥)) = ((𝐹𝑃)𝑁(𝐹‘(𝐹𝑥)))))
4112, 30, 40syl2anc 583 . . . . . . . . . 10 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → ((𝐹𝑥) ∈ 𝑋 → (𝑃𝑀(𝐹𝑥)) = ((𝐹𝑃)𝑁(𝐹‘(𝐹𝑥)))))
4241imp 406 . . . . . . . . 9 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ (𝐹𝑥) ∈ 𝑋) → (𝑃𝑀(𝐹𝑥)) = ((𝐹𝑃)𝑁(𝐹‘(𝐹𝑥))))
4327, 42syldan 590 . . . . . . . 8 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → (𝑃𝑀(𝐹𝑥)) = ((𝐹𝑃)𝑁(𝐹‘(𝐹𝑥))))
4443breq1d 5176 . . . . . . 7 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → ((𝑃𝑀(𝐹𝑥)) < 𝑅 ↔ ((𝐹𝑃)𝑁(𝐹‘(𝐹𝑥))) < 𝑅))
4529, 44bitrd 279 . . . . . 6 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → ((𝐹𝑥) ∈ (𝑃(ball‘𝑀)𝑅) ↔ ((𝐹𝑃)𝑁(𝐹‘(𝐹𝑥))) < 𝑅))
46 f1of1 6863 . . . . . . . . 9 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋1-1𝑌)
475, 46syl 17 . . . . . . . 8 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → 𝐹:𝑋1-1𝑌)
4847adantr 480 . . . . . . 7 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → 𝐹:𝑋1-1𝑌)
49 blssm 24451 . . . . . . . . 9 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝑀)𝑅) ⊆ 𝑋)
5019, 12, 15, 49syl3anc 1371 . . . . . . . 8 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → (𝑃(ball‘𝑀)𝑅) ⊆ 𝑋)
5150adantr 480 . . . . . . 7 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → (𝑃(ball‘𝑀)𝑅) ⊆ 𝑋)
52 f1elima 7302 . . . . . . 7 ((𝐹:𝑋1-1𝑌 ∧ (𝐹𝑥) ∈ 𝑋 ∧ (𝑃(ball‘𝑀)𝑅) ⊆ 𝑋) → ((𝐹‘(𝐹𝑥)) ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ↔ (𝐹𝑥) ∈ (𝑃(ball‘𝑀)𝑅)))
5348, 27, 51, 52syl3anc 1371 . . . . . 6 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → ((𝐹‘(𝐹𝑥)) ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ↔ (𝐹𝑥) ∈ (𝑃(ball‘𝑀)𝑅)))
5411adantr 480 . . . . . . 7 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → 𝑁 ∈ (∞Met‘𝑌))
5514adantr 480 . . . . . . 7 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → (𝐹𝑃) ∈ 𝑌)
56 f1ocnvfv2 7315 . . . . . . . . 9 ((𝐹:𝑋1-1-onto𝑌𝑥𝑌) → (𝐹‘(𝐹𝑥)) = 𝑥)
575, 56sylan 579 . . . . . . . 8 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → (𝐹‘(𝐹𝑥)) = 𝑥)
58 simpr 484 . . . . . . . 8 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → 𝑥𝑌)
5957, 58eqeltrd 2844 . . . . . . 7 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → (𝐹‘(𝐹𝑥)) ∈ 𝑌)
60 elbl2 24423 . . . . . . 7 (((𝑁 ∈ (∞Met‘𝑌) ∧ 𝑅 ∈ ℝ*) ∧ ((𝐹𝑃) ∈ 𝑌 ∧ (𝐹‘(𝐹𝑥)) ∈ 𝑌)) → ((𝐹‘(𝐹𝑥)) ∈ ((𝐹𝑃)(ball‘𝑁)𝑅) ↔ ((𝐹𝑃)𝑁(𝐹‘(𝐹𝑥))) < 𝑅))
6154, 21, 55, 59, 60syl22anc 838 . . . . . 6 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → ((𝐹‘(𝐹𝑥)) ∈ ((𝐹𝑃)(ball‘𝑁)𝑅) ↔ ((𝐹𝑃)𝑁(𝐹‘(𝐹𝑥))) < 𝑅))
6245, 53, 613bitr4d 311 . . . . 5 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → ((𝐹‘(𝐹𝑥)) ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ↔ (𝐹‘(𝐹𝑥)) ∈ ((𝐹𝑃)(ball‘𝑁)𝑅)))
6357eleq1d 2829 . . . . 5 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → ((𝐹‘(𝐹𝑥)) ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ↔ 𝑥 ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅))))
6457eleq1d 2829 . . . . 5 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → ((𝐹‘(𝐹𝑥)) ∈ ((𝐹𝑃)(ball‘𝑁)𝑅) ↔ 𝑥 ∈ ((𝐹𝑃)(ball‘𝑁)𝑅)))
6562, 63, 643bitr3d 309 . . . 4 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → (𝑥 ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ↔ 𝑥 ∈ ((𝐹𝑃)(ball‘𝑁)𝑅)))
6665ex 412 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → (𝑥𝑌 → (𝑥 ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ↔ 𝑥 ∈ ((𝐹𝑃)(ball‘𝑁)𝑅))))
6710, 18, 66pm5.21ndd 379 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → (𝑥 ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ↔ 𝑥 ∈ ((𝐹𝑃)(ball‘𝑁)𝑅)))
6867eqrdv 2738 1 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → (𝐹 “ (𝑃(ball‘𝑀)𝑅)) = ((𝐹𝑃)(ball‘𝑁)𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wss 3976   class class class wbr 5166  ccnv 5699  ran crn 5701  cima 5703  wf 6571  1-1wf1 6572  1-1-ontowf1o 6574  cfv 6575  (class class class)co 7450  *cxr 11325   < clt 11326  ∞Metcxmet 21374  ballcbl 21376   Ismty cismty 37760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-1st 8032  df-2nd 8033  df-map 8888  df-xr 11330  df-psmet 21381  df-xmet 21382  df-bl 21384  df-ismty 37761
This theorem is referenced by:  ismtyhmeolem  37766  ismtybndlem  37768
  Copyright terms: Public domain W3C validator