| Step | Hyp | Ref
| Expression |
| 1 | | imassrn 6069 |
. . . . 5
⊢ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ⊆ ran 𝐹 |
| 2 | | isismty 37767 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))))) |
| 3 | 2 | biimp3a 1470 |
. . . . . . . . 9
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)))) |
| 4 | 3 | adantr 480 |
. . . . . . . 8
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)))) |
| 5 | 4 | simpld 494 |
. . . . . . 7
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → 𝐹:𝑋–1-1-onto→𝑌) |
| 6 | | f1of 6828 |
. . . . . . 7
⊢ (𝐹:𝑋–1-1-onto→𝑌 → 𝐹:𝑋⟶𝑌) |
| 7 | 5, 6 | syl 17 |
. . . . . 6
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → 𝐹:𝑋⟶𝑌) |
| 8 | 7 | frnd 6724 |
. . . . 5
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → ran
𝐹 ⊆ 𝑌) |
| 9 | 1, 8 | sstrid 3975 |
. . . 4
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ⊆ 𝑌) |
| 10 | 9 | sseld 3962 |
. . 3
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → (𝑥 ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) → 𝑥 ∈ 𝑌)) |
| 11 | | simpl2 1192 |
. . . . 5
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → 𝑁 ∈ (∞Met‘𝑌)) |
| 12 | | simprl 770 |
. . . . . 6
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → 𝑃 ∈ 𝑋) |
| 13 | | ffvelcdm 7081 |
. . . . . 6
⊢ ((𝐹:𝑋⟶𝑌 ∧ 𝑃 ∈ 𝑋) → (𝐹‘𝑃) ∈ 𝑌) |
| 14 | 7, 12, 13 | syl2anc 584 |
. . . . 5
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → (𝐹‘𝑃) ∈ 𝑌) |
| 15 | | simprr 772 |
. . . . 5
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → 𝑅 ∈
ℝ*) |
| 16 | | blssm 24373 |
. . . . 5
⊢ ((𝑁 ∈ (∞Met‘𝑌) ∧ (𝐹‘𝑃) ∈ 𝑌 ∧ 𝑅 ∈ ℝ*) → ((𝐹‘𝑃)(ball‘𝑁)𝑅) ⊆ 𝑌) |
| 17 | 11, 14, 15, 16 | syl3anc 1372 |
. . . 4
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → ((𝐹‘𝑃)(ball‘𝑁)𝑅) ⊆ 𝑌) |
| 18 | 17 | sseld 3962 |
. . 3
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → (𝑥 ∈ ((𝐹‘𝑃)(ball‘𝑁)𝑅) → 𝑥 ∈ 𝑌)) |
| 19 | | simpl1 1191 |
. . . . . . . . 9
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → 𝑀 ∈ (∞Met‘𝑋)) |
| 20 | 19 | adantr 480 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → 𝑀 ∈ (∞Met‘𝑋)) |
| 21 | | simplrr 777 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → 𝑅 ∈
ℝ*) |
| 22 | | simplrl 776 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → 𝑃 ∈ 𝑋) |
| 23 | | f1ocnv 6840 |
. . . . . . . . . 10
⊢ (𝐹:𝑋–1-1-onto→𝑌 → ◡𝐹:𝑌–1-1-onto→𝑋) |
| 24 | | f1of 6828 |
. . . . . . . . . 10
⊢ (◡𝐹:𝑌–1-1-onto→𝑋 → ◡𝐹:𝑌⟶𝑋) |
| 25 | 5, 23, 24 | 3syl 18 |
. . . . . . . . 9
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → ◡𝐹:𝑌⟶𝑋) |
| 26 | | ffvelcdm 7081 |
. . . . . . . . 9
⊢ ((◡𝐹:𝑌⟶𝑋 ∧ 𝑥 ∈ 𝑌) → (◡𝐹‘𝑥) ∈ 𝑋) |
| 27 | 25, 26 | sylan 580 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → (◡𝐹‘𝑥) ∈ 𝑋) |
| 28 | | elbl2 24345 |
. . . . . . . 8
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ (◡𝐹‘𝑥) ∈ 𝑋)) → ((◡𝐹‘𝑥) ∈ (𝑃(ball‘𝑀)𝑅) ↔ (𝑃𝑀(◡𝐹‘𝑥)) < 𝑅)) |
| 29 | 20, 21, 22, 27, 28 | syl22anc 838 |
. . . . . . 7
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → ((◡𝐹‘𝑥) ∈ (𝑃(ball‘𝑀)𝑅) ↔ (𝑃𝑀(◡𝐹‘𝑥)) < 𝑅)) |
| 30 | 4 | simprd 495 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) →
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))) |
| 31 | | oveq1 7420 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑃 → (𝑥𝑀𝑦) = (𝑃𝑀𝑦)) |
| 32 | | fveq2 6886 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑃 → (𝐹‘𝑥) = (𝐹‘𝑃)) |
| 33 | 32 | oveq1d 7428 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑃 → ((𝐹‘𝑥)𝑁(𝐹‘𝑦)) = ((𝐹‘𝑃)𝑁(𝐹‘𝑦))) |
| 34 | 31, 33 | eqeq12d 2750 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑃 → ((𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)) ↔ (𝑃𝑀𝑦) = ((𝐹‘𝑃)𝑁(𝐹‘𝑦)))) |
| 35 | | oveq2 7421 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (◡𝐹‘𝑥) → (𝑃𝑀𝑦) = (𝑃𝑀(◡𝐹‘𝑥))) |
| 36 | | fveq2 6886 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (◡𝐹‘𝑥) → (𝐹‘𝑦) = (𝐹‘(◡𝐹‘𝑥))) |
| 37 | 36 | oveq2d 7429 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (◡𝐹‘𝑥) → ((𝐹‘𝑃)𝑁(𝐹‘𝑦)) = ((𝐹‘𝑃)𝑁(𝐹‘(◡𝐹‘𝑥)))) |
| 38 | 35, 37 | eqeq12d 2750 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (◡𝐹‘𝑥) → ((𝑃𝑀𝑦) = ((𝐹‘𝑃)𝑁(𝐹‘𝑦)) ↔ (𝑃𝑀(◡𝐹‘𝑥)) = ((𝐹‘𝑃)𝑁(𝐹‘(◡𝐹‘𝑥))))) |
| 39 | 34, 38 | rspc2v 3616 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ 𝑋 ∧ (◡𝐹‘𝑥) ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦)) → (𝑃𝑀(◡𝐹‘𝑥)) = ((𝐹‘𝑃)𝑁(𝐹‘(◡𝐹‘𝑥))))) |
| 40 | 39 | impancom 451 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))) → ((◡𝐹‘𝑥) ∈ 𝑋 → (𝑃𝑀(◡𝐹‘𝑥)) = ((𝐹‘𝑃)𝑁(𝐹‘(◡𝐹‘𝑥))))) |
| 41 | 12, 30, 40 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → ((◡𝐹‘𝑥) ∈ 𝑋 → (𝑃𝑀(◡𝐹‘𝑥)) = ((𝐹‘𝑃)𝑁(𝐹‘(◡𝐹‘𝑥))))) |
| 42 | 41 | imp 406 |
. . . . . . . . 9
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ (◡𝐹‘𝑥) ∈ 𝑋) → (𝑃𝑀(◡𝐹‘𝑥)) = ((𝐹‘𝑃)𝑁(𝐹‘(◡𝐹‘𝑥)))) |
| 43 | 27, 42 | syldan 591 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → (𝑃𝑀(◡𝐹‘𝑥)) = ((𝐹‘𝑃)𝑁(𝐹‘(◡𝐹‘𝑥)))) |
| 44 | 43 | breq1d 5133 |
. . . . . . 7
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → ((𝑃𝑀(◡𝐹‘𝑥)) < 𝑅 ↔ ((𝐹‘𝑃)𝑁(𝐹‘(◡𝐹‘𝑥))) < 𝑅)) |
| 45 | 29, 44 | bitrd 279 |
. . . . . 6
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → ((◡𝐹‘𝑥) ∈ (𝑃(ball‘𝑀)𝑅) ↔ ((𝐹‘𝑃)𝑁(𝐹‘(◡𝐹‘𝑥))) < 𝑅)) |
| 46 | | f1of1 6827 |
. . . . . . . . 9
⊢ (𝐹:𝑋–1-1-onto→𝑌 → 𝐹:𝑋–1-1→𝑌) |
| 47 | 5, 46 | syl 17 |
. . . . . . . 8
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → 𝐹:𝑋–1-1→𝑌) |
| 48 | 47 | adantr 480 |
. . . . . . 7
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → 𝐹:𝑋–1-1→𝑌) |
| 49 | | blssm 24373 |
. . . . . . . . 9
⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝑀)𝑅) ⊆ 𝑋) |
| 50 | 19, 12, 15, 49 | syl3anc 1372 |
. . . . . . . 8
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → (𝑃(ball‘𝑀)𝑅) ⊆ 𝑋) |
| 51 | 50 | adantr 480 |
. . . . . . 7
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → (𝑃(ball‘𝑀)𝑅) ⊆ 𝑋) |
| 52 | | f1elima 7265 |
. . . . . . 7
⊢ ((𝐹:𝑋–1-1→𝑌 ∧ (◡𝐹‘𝑥) ∈ 𝑋 ∧ (𝑃(ball‘𝑀)𝑅) ⊆ 𝑋) → ((𝐹‘(◡𝐹‘𝑥)) ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ↔ (◡𝐹‘𝑥) ∈ (𝑃(ball‘𝑀)𝑅))) |
| 53 | 48, 27, 51, 52 | syl3anc 1372 |
. . . . . 6
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → ((𝐹‘(◡𝐹‘𝑥)) ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ↔ (◡𝐹‘𝑥) ∈ (𝑃(ball‘𝑀)𝑅))) |
| 54 | 11 | adantr 480 |
. . . . . . 7
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → 𝑁 ∈ (∞Met‘𝑌)) |
| 55 | 14 | adantr 480 |
. . . . . . 7
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → (𝐹‘𝑃) ∈ 𝑌) |
| 56 | | f1ocnvfv2 7279 |
. . . . . . . . 9
⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ 𝑥 ∈ 𝑌) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) |
| 57 | 5, 56 | sylan 580 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → (𝐹‘(◡𝐹‘𝑥)) = 𝑥) |
| 58 | | simpr 484 |
. . . . . . . 8
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ 𝑌) |
| 59 | 57, 58 | eqeltrd 2833 |
. . . . . . 7
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → (𝐹‘(◡𝐹‘𝑥)) ∈ 𝑌) |
| 60 | | elbl2 24345 |
. . . . . . 7
⊢ (((𝑁 ∈ (∞Met‘𝑌) ∧ 𝑅 ∈ ℝ*) ∧ ((𝐹‘𝑃) ∈ 𝑌 ∧ (𝐹‘(◡𝐹‘𝑥)) ∈ 𝑌)) → ((𝐹‘(◡𝐹‘𝑥)) ∈ ((𝐹‘𝑃)(ball‘𝑁)𝑅) ↔ ((𝐹‘𝑃)𝑁(𝐹‘(◡𝐹‘𝑥))) < 𝑅)) |
| 61 | 54, 21, 55, 59, 60 | syl22anc 838 |
. . . . . 6
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → ((𝐹‘(◡𝐹‘𝑥)) ∈ ((𝐹‘𝑃)(ball‘𝑁)𝑅) ↔ ((𝐹‘𝑃)𝑁(𝐹‘(◡𝐹‘𝑥))) < 𝑅)) |
| 62 | 45, 53, 61 | 3bitr4d 311 |
. . . . 5
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → ((𝐹‘(◡𝐹‘𝑥)) ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ↔ (𝐹‘(◡𝐹‘𝑥)) ∈ ((𝐹‘𝑃)(ball‘𝑁)𝑅))) |
| 63 | 57 | eleq1d 2818 |
. . . . 5
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → ((𝐹‘(◡𝐹‘𝑥)) ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ↔ 𝑥 ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)))) |
| 64 | 57 | eleq1d 2818 |
. . . . 5
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → ((𝐹‘(◡𝐹‘𝑥)) ∈ ((𝐹‘𝑃)(ball‘𝑁)𝑅) ↔ 𝑥 ∈ ((𝐹‘𝑃)(ball‘𝑁)𝑅))) |
| 65 | 62, 63, 64 | 3bitr3d 309 |
. . . 4
⊢ ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) ∧ 𝑥 ∈ 𝑌) → (𝑥 ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ↔ 𝑥 ∈ ((𝐹‘𝑃)(ball‘𝑁)𝑅))) |
| 66 | 65 | ex 412 |
. . 3
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → (𝑥 ∈ 𝑌 → (𝑥 ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ↔ 𝑥 ∈ ((𝐹‘𝑃)(ball‘𝑁)𝑅)))) |
| 67 | 10, 18, 66 | pm5.21ndd 379 |
. 2
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → (𝑥 ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ↔ 𝑥 ∈ ((𝐹‘𝑃)(ball‘𝑁)𝑅))) |
| 68 | 67 | eqrdv 2732 |
1
⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → (𝐹 “ (𝑃(ball‘𝑀)𝑅)) = ((𝐹‘𝑃)(ball‘𝑁)𝑅)) |