Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismtyima Structured version   Visualization version   GIF version

Theorem ismtyima 36609
Description: The image of a ball under an isometry is another ball. (Contributed by Jeff Madsen, 31-Jan-2014.)
Assertion
Ref Expression
ismtyima (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → (𝐹 “ (𝑃(ball‘𝑀)𝑅)) = ((𝐹𝑃)(ball‘𝑁)𝑅))

Proof of Theorem ismtyima
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 6068 . . . . 5 (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ⊆ ran 𝐹
2 isismty 36607 . . . . . . . . . 10 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))))
32biimp3a 1470 . . . . . . . . 9 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))))
43adantr 482 . . . . . . . 8 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))))
54simpld 496 . . . . . . 7 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → 𝐹:𝑋1-1-onto𝑌)
6 f1of 6830 . . . . . . 7 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋𝑌)
75, 6syl 17 . . . . . 6 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → 𝐹:𝑋𝑌)
87frnd 6722 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → ran 𝐹𝑌)
91, 8sstrid 3992 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ⊆ 𝑌)
109sseld 3980 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → (𝑥 ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) → 𝑥𝑌))
11 simpl2 1193 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → 𝑁 ∈ (∞Met‘𝑌))
12 simprl 770 . . . . . 6 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → 𝑃𝑋)
13 ffvelcdm 7079 . . . . . 6 ((𝐹:𝑋𝑌𝑃𝑋) → (𝐹𝑃) ∈ 𝑌)
147, 12, 13syl2anc 585 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → (𝐹𝑃) ∈ 𝑌)
15 simprr 772 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → 𝑅 ∈ ℝ*)
16 blssm 23906 . . . . 5 ((𝑁 ∈ (∞Met‘𝑌) ∧ (𝐹𝑃) ∈ 𝑌𝑅 ∈ ℝ*) → ((𝐹𝑃)(ball‘𝑁)𝑅) ⊆ 𝑌)
1711, 14, 15, 16syl3anc 1372 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → ((𝐹𝑃)(ball‘𝑁)𝑅) ⊆ 𝑌)
1817sseld 3980 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → (𝑥 ∈ ((𝐹𝑃)(ball‘𝑁)𝑅) → 𝑥𝑌))
19 simpl1 1192 . . . . . . . . 9 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → 𝑀 ∈ (∞Met‘𝑋))
2019adantr 482 . . . . . . . 8 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → 𝑀 ∈ (∞Met‘𝑋))
21 simplrr 777 . . . . . . . 8 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → 𝑅 ∈ ℝ*)
22 simplrl 776 . . . . . . . 8 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → 𝑃𝑋)
23 f1ocnv 6842 . . . . . . . . . 10 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
24 f1of 6830 . . . . . . . . . 10 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
255, 23, 243syl 18 . . . . . . . . 9 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → 𝐹:𝑌𝑋)
26 ffvelcdm 7079 . . . . . . . . 9 ((𝐹:𝑌𝑋𝑥𝑌) → (𝐹𝑥) ∈ 𝑋)
2725, 26sylan 581 . . . . . . . 8 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → (𝐹𝑥) ∈ 𝑋)
28 elbl2 23878 . . . . . . . 8 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋 ∧ (𝐹𝑥) ∈ 𝑋)) → ((𝐹𝑥) ∈ (𝑃(ball‘𝑀)𝑅) ↔ (𝑃𝑀(𝐹𝑥)) < 𝑅))
2920, 21, 22, 27, 28syl22anc 838 . . . . . . 7 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → ((𝐹𝑥) ∈ (𝑃(ball‘𝑀)𝑅) ↔ (𝑃𝑀(𝐹𝑥)) < 𝑅))
304simprd 497 . . . . . . . . . . 11 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))
31 oveq1 7411 . . . . . . . . . . . . . 14 (𝑥 = 𝑃 → (𝑥𝑀𝑦) = (𝑃𝑀𝑦))
32 fveq2 6888 . . . . . . . . . . . . . . 15 (𝑥 = 𝑃 → (𝐹𝑥) = (𝐹𝑃))
3332oveq1d 7419 . . . . . . . . . . . . . 14 (𝑥 = 𝑃 → ((𝐹𝑥)𝑁(𝐹𝑦)) = ((𝐹𝑃)𝑁(𝐹𝑦)))
3431, 33eqeq12d 2749 . . . . . . . . . . . . 13 (𝑥 = 𝑃 → ((𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)) ↔ (𝑃𝑀𝑦) = ((𝐹𝑃)𝑁(𝐹𝑦))))
35 oveq2 7412 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑥) → (𝑃𝑀𝑦) = (𝑃𝑀(𝐹𝑥)))
36 fveq2 6888 . . . . . . . . . . . . . . 15 (𝑦 = (𝐹𝑥) → (𝐹𝑦) = (𝐹‘(𝐹𝑥)))
3736oveq2d 7420 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑥) → ((𝐹𝑃)𝑁(𝐹𝑦)) = ((𝐹𝑃)𝑁(𝐹‘(𝐹𝑥))))
3835, 37eqeq12d 2749 . . . . . . . . . . . . 13 (𝑦 = (𝐹𝑥) → ((𝑃𝑀𝑦) = ((𝐹𝑃)𝑁(𝐹𝑦)) ↔ (𝑃𝑀(𝐹𝑥)) = ((𝐹𝑃)𝑁(𝐹‘(𝐹𝑥)))))
3934, 38rspc2v 3621 . . . . . . . . . . . 12 ((𝑃𝑋 ∧ (𝐹𝑥) ∈ 𝑋) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)) → (𝑃𝑀(𝐹𝑥)) = ((𝐹𝑃)𝑁(𝐹‘(𝐹𝑥)))))
4039impancom 453 . . . . . . . . . . 11 ((𝑃𝑋 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))) → ((𝐹𝑥) ∈ 𝑋 → (𝑃𝑀(𝐹𝑥)) = ((𝐹𝑃)𝑁(𝐹‘(𝐹𝑥)))))
4112, 30, 40syl2anc 585 . . . . . . . . . 10 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → ((𝐹𝑥) ∈ 𝑋 → (𝑃𝑀(𝐹𝑥)) = ((𝐹𝑃)𝑁(𝐹‘(𝐹𝑥)))))
4241imp 408 . . . . . . . . 9 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ (𝐹𝑥) ∈ 𝑋) → (𝑃𝑀(𝐹𝑥)) = ((𝐹𝑃)𝑁(𝐹‘(𝐹𝑥))))
4327, 42syldan 592 . . . . . . . 8 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → (𝑃𝑀(𝐹𝑥)) = ((𝐹𝑃)𝑁(𝐹‘(𝐹𝑥))))
4443breq1d 5157 . . . . . . 7 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → ((𝑃𝑀(𝐹𝑥)) < 𝑅 ↔ ((𝐹𝑃)𝑁(𝐹‘(𝐹𝑥))) < 𝑅))
4529, 44bitrd 279 . . . . . 6 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → ((𝐹𝑥) ∈ (𝑃(ball‘𝑀)𝑅) ↔ ((𝐹𝑃)𝑁(𝐹‘(𝐹𝑥))) < 𝑅))
46 f1of1 6829 . . . . . . . . 9 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋1-1𝑌)
475, 46syl 17 . . . . . . . 8 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → 𝐹:𝑋1-1𝑌)
4847adantr 482 . . . . . . 7 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → 𝐹:𝑋1-1𝑌)
49 blssm 23906 . . . . . . . . 9 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝑀)𝑅) ⊆ 𝑋)
5019, 12, 15, 49syl3anc 1372 . . . . . . . 8 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → (𝑃(ball‘𝑀)𝑅) ⊆ 𝑋)
5150adantr 482 . . . . . . 7 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → (𝑃(ball‘𝑀)𝑅) ⊆ 𝑋)
52 f1elima 7257 . . . . . . 7 ((𝐹:𝑋1-1𝑌 ∧ (𝐹𝑥) ∈ 𝑋 ∧ (𝑃(ball‘𝑀)𝑅) ⊆ 𝑋) → ((𝐹‘(𝐹𝑥)) ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ↔ (𝐹𝑥) ∈ (𝑃(ball‘𝑀)𝑅)))
5348, 27, 51, 52syl3anc 1372 . . . . . 6 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → ((𝐹‘(𝐹𝑥)) ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ↔ (𝐹𝑥) ∈ (𝑃(ball‘𝑀)𝑅)))
5411adantr 482 . . . . . . 7 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → 𝑁 ∈ (∞Met‘𝑌))
5514adantr 482 . . . . . . 7 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → (𝐹𝑃) ∈ 𝑌)
56 f1ocnvfv2 7270 . . . . . . . . 9 ((𝐹:𝑋1-1-onto𝑌𝑥𝑌) → (𝐹‘(𝐹𝑥)) = 𝑥)
575, 56sylan 581 . . . . . . . 8 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → (𝐹‘(𝐹𝑥)) = 𝑥)
58 simpr 486 . . . . . . . 8 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → 𝑥𝑌)
5957, 58eqeltrd 2834 . . . . . . 7 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → (𝐹‘(𝐹𝑥)) ∈ 𝑌)
60 elbl2 23878 . . . . . . 7 (((𝑁 ∈ (∞Met‘𝑌) ∧ 𝑅 ∈ ℝ*) ∧ ((𝐹𝑃) ∈ 𝑌 ∧ (𝐹‘(𝐹𝑥)) ∈ 𝑌)) → ((𝐹‘(𝐹𝑥)) ∈ ((𝐹𝑃)(ball‘𝑁)𝑅) ↔ ((𝐹𝑃)𝑁(𝐹‘(𝐹𝑥))) < 𝑅))
6154, 21, 55, 59, 60syl22anc 838 . . . . . 6 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → ((𝐹‘(𝐹𝑥)) ∈ ((𝐹𝑃)(ball‘𝑁)𝑅) ↔ ((𝐹𝑃)𝑁(𝐹‘(𝐹𝑥))) < 𝑅))
6245, 53, 613bitr4d 311 . . . . 5 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → ((𝐹‘(𝐹𝑥)) ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ↔ (𝐹‘(𝐹𝑥)) ∈ ((𝐹𝑃)(ball‘𝑁)𝑅)))
6357eleq1d 2819 . . . . 5 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → ((𝐹‘(𝐹𝑥)) ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ↔ 𝑥 ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅))))
6457eleq1d 2819 . . . . 5 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → ((𝐹‘(𝐹𝑥)) ∈ ((𝐹𝑃)(ball‘𝑁)𝑅) ↔ 𝑥 ∈ ((𝐹𝑃)(ball‘𝑁)𝑅)))
6562, 63, 643bitr3d 309 . . . 4 ((((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) ∧ 𝑥𝑌) → (𝑥 ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ↔ 𝑥 ∈ ((𝐹𝑃)(ball‘𝑁)𝑅)))
6665ex 414 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → (𝑥𝑌 → (𝑥 ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ↔ 𝑥 ∈ ((𝐹𝑃)(ball‘𝑁)𝑅))))
6710, 18, 66pm5.21ndd 381 . 2 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → (𝑥 ∈ (𝐹 “ (𝑃(ball‘𝑀)𝑅)) ↔ 𝑥 ∈ ((𝐹𝑃)(ball‘𝑁)𝑅)))
6867eqrdv 2731 1 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃𝑋𝑅 ∈ ℝ*)) → (𝐹 “ (𝑃(ball‘𝑀)𝑅)) = ((𝐹𝑃)(ball‘𝑁)𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  wss 3947   class class class wbr 5147  ccnv 5674  ran crn 5676  cima 5678  wf 6536  1-1wf1 6537  1-1-ontowf1o 6539  cfv 6540  (class class class)co 7404  *cxr 11243   < clt 11244  ∞Metcxmet 20914  ballcbl 20916   Ismty cismty 36604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7970  df-2nd 7971  df-map 8818  df-xr 11248  df-psmet 20921  df-xmet 20922  df-bl 20924  df-ismty 36605
This theorem is referenced by:  ismtyhmeolem  36610  ismtybndlem  36612
  Copyright terms: Public domain W3C validator