| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngqiprngu | Structured version Visualization version GIF version | ||
| Description: If a non-unital ring has a (two-sided) ideal which is unital, and the quotient of the ring and the ideal is also unital, then the ring is also unital with a ring unity which can be constructed from the ring unity of the ideal and a representative of the ring unity of the quotient. (Contributed by AV, 17-Mar-2025.) |
| Ref | Expression |
|---|---|
| rngqiprngfu.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rngqiprngfu.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| rngqiprngfu.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| rngqiprngfu.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
| rngqiprngfu.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngqiprngfu.t | ⊢ · = (.r‘𝑅) |
| rngqiprngfu.1 | ⊢ 1 = (1r‘𝐽) |
| rngqiprngfu.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| rngqiprngfu.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
| rngqiprngfu.v | ⊢ (𝜑 → 𝑄 ∈ Ring) |
| rngqiprngfu.e | ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) |
| rngqiprngfu.m | ⊢ − = (-g‘𝑅) |
| rngqiprngfu.a | ⊢ + = (+g‘𝑅) |
| rngqiprngfu.n | ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) |
| Ref | Expression |
|---|---|
| rngqiprngu | ⊢ (𝜑 → (1r‘𝑅) = 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (𝑄 ×s 𝐽) = (𝑄 ×s 𝐽) | |
| 2 | rngqiprngfu.v | . . . 4 ⊢ (𝜑 → 𝑄 ∈ Ring) | |
| 3 | rngqiprngfu.u | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
| 4 | 1, 2, 3 | xpsringd 20235 | . . 3 ⊢ (𝜑 → (𝑄 ×s 𝐽) ∈ Ring) |
| 5 | rngqiprngfu.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 6 | rngqiprngfu.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 7 | rngqiprngfu.j | . . . . 5 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 8 | rngqiprngfu.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 9 | rngqiprngfu.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 10 | rngqiprngfu.1 | . . . . 5 ⊢ 1 = (1r‘𝐽) | |
| 11 | rngqiprngfu.g | . . . . 5 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 12 | rngqiprngfu.q | . . . . 5 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
| 13 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑄) = (Base‘𝑄) | |
| 14 | eqid 2729 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) | |
| 15 | 5, 6, 7, 3, 8, 9, 10, 11, 12, 13, 1, 14 | rngqiprngim 21229 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ∈ (𝑅 RngIso (𝑄 ×s 𝐽))) |
| 16 | rngimcnv 20359 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ∈ (𝑅 RngIso (𝑄 ×s 𝐽)) → ◡(𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ∈ ((𝑄 ×s 𝐽) RngIso 𝑅)) | |
| 17 | 15, 16 | syl 17 | . . 3 ⊢ (𝜑 → ◡(𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ∈ ((𝑄 ×s 𝐽) RngIso 𝑅)) |
| 18 | rngisomring1 20371 | . . 3 ⊢ (((𝑄 ×s 𝐽) ∈ Ring ∧ 𝑅 ∈ Rng ∧ ◡(𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ∈ ((𝑄 ×s 𝐽) RngIso 𝑅)) → (1r‘𝑅) = (◡(𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉)‘(1r‘(𝑄 ×s 𝐽)))) | |
| 19 | 4, 5, 17, 18 | syl3anc 1373 | . 2 ⊢ (𝜑 → (1r‘𝑅) = (◡(𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉)‘(1r‘(𝑄 ×s 𝐽)))) |
| 20 | rngqiprngfu.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) | |
| 21 | rngqiprngfu.m | . . . . 5 ⊢ − = (-g‘𝑅) | |
| 22 | rngqiprngfu.a | . . . . 5 ⊢ + = (+g‘𝑅) | |
| 23 | rngqiprngfu.n | . . . . 5 ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) | |
| 24 | 5, 6, 7, 3, 8, 9, 10, 11, 12, 2, 20, 21, 22, 23, 14 | rngqiprngfu 21242 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉)‘𝑈) = 〈[𝐸] ∼ , 1 〉) |
| 25 | 5, 6, 7, 3, 8, 9, 10, 11, 12, 2, 20, 21, 22, 23, 1 | rngqipring1 21241 | . . . 4 ⊢ (𝜑 → (1r‘(𝑄 ×s 𝐽)) = 〈[𝐸] ∼ , 1 〉) |
| 26 | 24, 25 | eqtr4d 2767 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉)‘𝑈) = (1r‘(𝑄 ×s 𝐽))) |
| 27 | eqid 2729 | . . . . . 6 ⊢ (Base‘(𝑄 ×s 𝐽)) = (Base‘(𝑄 ×s 𝐽)) | |
| 28 | 8, 27 | rngimf1o 20357 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ∈ (𝑅 RngIso (𝑄 ×s 𝐽)) → (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉):𝐵–1-1-onto→(Base‘(𝑄 ×s 𝐽))) |
| 29 | 15, 28 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉):𝐵–1-1-onto→(Base‘(𝑄 ×s 𝐽))) |
| 30 | 5, 6, 7, 3, 8, 9, 10, 11, 12, 2, 20, 21, 22, 23 | rngqiprngfulem3 21238 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝐵) |
| 31 | eqid 2729 | . . . . . 6 ⊢ (1r‘(𝑄 ×s 𝐽)) = (1r‘(𝑄 ×s 𝐽)) | |
| 32 | 27, 31 | ringidcl 20168 | . . . . 5 ⊢ ((𝑄 ×s 𝐽) ∈ Ring → (1r‘(𝑄 ×s 𝐽)) ∈ (Base‘(𝑄 ×s 𝐽))) |
| 33 | 4, 32 | syl 17 | . . . 4 ⊢ (𝜑 → (1r‘(𝑄 ×s 𝐽)) ∈ (Base‘(𝑄 ×s 𝐽))) |
| 34 | f1ocnvfvb 7220 | . . . 4 ⊢ (((𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉):𝐵–1-1-onto→(Base‘(𝑄 ×s 𝐽)) ∧ 𝑈 ∈ 𝐵 ∧ (1r‘(𝑄 ×s 𝐽)) ∈ (Base‘(𝑄 ×s 𝐽))) → (((𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉)‘𝑈) = (1r‘(𝑄 ×s 𝐽)) ↔ (◡(𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉)‘(1r‘(𝑄 ×s 𝐽))) = 𝑈)) | |
| 35 | 29, 30, 33, 34 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉)‘𝑈) = (1r‘(𝑄 ×s 𝐽)) ↔ (◡(𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉)‘(1r‘(𝑄 ×s 𝐽))) = 𝑈)) |
| 36 | 26, 35 | mpbid 232 | . 2 ⊢ (𝜑 → (◡(𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉)‘(1r‘(𝑄 ×s 𝐽))) = 𝑈) |
| 37 | 19, 36 | eqtrd 2764 | 1 ⊢ (𝜑 → (1r‘𝑅) = 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 〈cop 4585 ↦ cmpt 5176 ◡ccnv 5622 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7353 [cec 8630 Basecbs 17138 ↾s cress 17159 +gcplusg 17179 .rcmulr 17180 /s cqus 17427 ×s cxps 17428 -gcsg 18832 ~QG cqg 19019 Rngcrng 20055 1rcur 20084 Ringcrg 20136 RngIso crngim 20338 2Idealc2idl 21174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-ec 8634 df-qs 8638 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-hom 17203 df-cco 17204 df-0g 17363 df-prds 17369 df-imas 17430 df-qus 17431 df-xps 17432 df-mgm 18532 df-mgmhm 18584 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-sbg 18835 df-subg 19020 df-nsg 19021 df-eqg 19022 df-ghm 19110 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-rnghm 20339 df-rngim 20340 df-subrng 20449 df-lss 20853 df-sra 21095 df-rgmod 21096 df-lidl 21133 df-2idl 21175 |
| This theorem is referenced by: ring2idlqus1 21244 |
| Copyright terms: Public domain | W3C validator |