| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngqiprngu | Structured version Visualization version GIF version | ||
| Description: If a non-unital ring has a (two-sided) ideal which is unital, and the quotient of the ring and the ideal is also unital, then the ring is also unital with a ring unity which can be constructed from the ring unity of the ideal and a representative of the ring unity of the quotient. (Contributed by AV, 17-Mar-2025.) |
| Ref | Expression |
|---|---|
| rngqiprngfu.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rngqiprngfu.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| rngqiprngfu.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| rngqiprngfu.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
| rngqiprngfu.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngqiprngfu.t | ⊢ · = (.r‘𝑅) |
| rngqiprngfu.1 | ⊢ 1 = (1r‘𝐽) |
| rngqiprngfu.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| rngqiprngfu.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
| rngqiprngfu.v | ⊢ (𝜑 → 𝑄 ∈ Ring) |
| rngqiprngfu.e | ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) |
| rngqiprngfu.m | ⊢ − = (-g‘𝑅) |
| rngqiprngfu.a | ⊢ + = (+g‘𝑅) |
| rngqiprngfu.n | ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) |
| Ref | Expression |
|---|---|
| rngqiprngu | ⊢ (𝜑 → (1r‘𝑅) = 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . 4 ⊢ (𝑄 ×s 𝐽) = (𝑄 ×s 𝐽) | |
| 2 | rngqiprngfu.v | . . . 4 ⊢ (𝜑 → 𝑄 ∈ Ring) | |
| 3 | rngqiprngfu.u | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
| 4 | 1, 2, 3 | xpsringd 20292 | . . 3 ⊢ (𝜑 → (𝑄 ×s 𝐽) ∈ Ring) |
| 5 | rngqiprngfu.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 6 | rngqiprngfu.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 7 | rngqiprngfu.j | . . . . 5 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 8 | rngqiprngfu.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 9 | rngqiprngfu.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 10 | rngqiprngfu.1 | . . . . 5 ⊢ 1 = (1r‘𝐽) | |
| 11 | rngqiprngfu.g | . . . . 5 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 12 | rngqiprngfu.q | . . . . 5 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
| 13 | eqid 2735 | . . . . 5 ⊢ (Base‘𝑄) = (Base‘𝑄) | |
| 14 | eqid 2735 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) | |
| 15 | 5, 6, 7, 3, 8, 9, 10, 11, 12, 13, 1, 14 | rngqiprngim 21265 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ∈ (𝑅 RngIso (𝑄 ×s 𝐽))) |
| 16 | rngimcnv 20416 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ∈ (𝑅 RngIso (𝑄 ×s 𝐽)) → ◡(𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ∈ ((𝑄 ×s 𝐽) RngIso 𝑅)) | |
| 17 | 15, 16 | syl 17 | . . 3 ⊢ (𝜑 → ◡(𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ∈ ((𝑄 ×s 𝐽) RngIso 𝑅)) |
| 18 | rngisomring1 20428 | . . 3 ⊢ (((𝑄 ×s 𝐽) ∈ Ring ∧ 𝑅 ∈ Rng ∧ ◡(𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ∈ ((𝑄 ×s 𝐽) RngIso 𝑅)) → (1r‘𝑅) = (◡(𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉)‘(1r‘(𝑄 ×s 𝐽)))) | |
| 19 | 4, 5, 17, 18 | syl3anc 1373 | . 2 ⊢ (𝜑 → (1r‘𝑅) = (◡(𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉)‘(1r‘(𝑄 ×s 𝐽)))) |
| 20 | rngqiprngfu.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) | |
| 21 | rngqiprngfu.m | . . . . 5 ⊢ − = (-g‘𝑅) | |
| 22 | rngqiprngfu.a | . . . . 5 ⊢ + = (+g‘𝑅) | |
| 23 | rngqiprngfu.n | . . . . 5 ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) | |
| 24 | 5, 6, 7, 3, 8, 9, 10, 11, 12, 2, 20, 21, 22, 23, 14 | rngqiprngfu 21278 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉)‘𝑈) = 〈[𝐸] ∼ , 1 〉) |
| 25 | 5, 6, 7, 3, 8, 9, 10, 11, 12, 2, 20, 21, 22, 23, 1 | rngqipring1 21277 | . . . 4 ⊢ (𝜑 → (1r‘(𝑄 ×s 𝐽)) = 〈[𝐸] ∼ , 1 〉) |
| 26 | 24, 25 | eqtr4d 2773 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉)‘𝑈) = (1r‘(𝑄 ×s 𝐽))) |
| 27 | eqid 2735 | . . . . . 6 ⊢ (Base‘(𝑄 ×s 𝐽)) = (Base‘(𝑄 ×s 𝐽)) | |
| 28 | 8, 27 | rngimf1o 20414 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ∈ (𝑅 RngIso (𝑄 ×s 𝐽)) → (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉):𝐵–1-1-onto→(Base‘(𝑄 ×s 𝐽))) |
| 29 | 15, 28 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉):𝐵–1-1-onto→(Base‘(𝑄 ×s 𝐽))) |
| 30 | 5, 6, 7, 3, 8, 9, 10, 11, 12, 2, 20, 21, 22, 23 | rngqiprngfulem3 21274 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝐵) |
| 31 | eqid 2735 | . . . . . 6 ⊢ (1r‘(𝑄 ×s 𝐽)) = (1r‘(𝑄 ×s 𝐽)) | |
| 32 | 27, 31 | ringidcl 20225 | . . . . 5 ⊢ ((𝑄 ×s 𝐽) ∈ Ring → (1r‘(𝑄 ×s 𝐽)) ∈ (Base‘(𝑄 ×s 𝐽))) |
| 33 | 4, 32 | syl 17 | . . . 4 ⊢ (𝜑 → (1r‘(𝑄 ×s 𝐽)) ∈ (Base‘(𝑄 ×s 𝐽))) |
| 34 | f1ocnvfvb 7272 | . . . 4 ⊢ (((𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉):𝐵–1-1-onto→(Base‘(𝑄 ×s 𝐽)) ∧ 𝑈 ∈ 𝐵 ∧ (1r‘(𝑄 ×s 𝐽)) ∈ (Base‘(𝑄 ×s 𝐽))) → (((𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉)‘𝑈) = (1r‘(𝑄 ×s 𝐽)) ↔ (◡(𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉)‘(1r‘(𝑄 ×s 𝐽))) = 𝑈)) | |
| 35 | 29, 30, 33, 34 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉)‘𝑈) = (1r‘(𝑄 ×s 𝐽)) ↔ (◡(𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉)‘(1r‘(𝑄 ×s 𝐽))) = 𝑈)) |
| 36 | 26, 35 | mpbid 232 | . 2 ⊢ (𝜑 → (◡(𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉)‘(1r‘(𝑄 ×s 𝐽))) = 𝑈) |
| 37 | 19, 36 | eqtrd 2770 | 1 ⊢ (𝜑 → (1r‘𝑅) = 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 〈cop 4607 ↦ cmpt 5201 ◡ccnv 5653 –1-1-onto→wf1o 6530 ‘cfv 6531 (class class class)co 7405 [cec 8717 Basecbs 17228 ↾s cress 17251 +gcplusg 17271 .rcmulr 17272 /s cqus 17519 ×s cxps 17520 -gcsg 18918 ~QG cqg 19105 Rngcrng 20112 1rcur 20141 Ringcrg 20193 RngIso crngim 20395 2Idealc2idl 21210 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-ec 8721 df-qs 8725 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-hom 17295 df-cco 17296 df-0g 17455 df-prds 17461 df-imas 17522 df-qus 17523 df-xps 17524 df-mgm 18618 df-mgmhm 18670 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-nsg 19107 df-eqg 19108 df-ghm 19196 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-rnghm 20396 df-rngim 20397 df-subrng 20506 df-lss 20889 df-sra 21131 df-rgmod 21132 df-lidl 21169 df-2idl 21211 |
| This theorem is referenced by: ring2idlqus1 21280 |
| Copyright terms: Public domain | W3C validator |