MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprngu Structured version   Visualization version   GIF version

Theorem rngqiprngu 21346
Description: If a non-unital ring has a (two-sided) ideal which is unital, and the quotient of the ring and the ideal is also unital, then the ring is also unital with a ring unity which can be constructed from the ring unity of the ideal and a representative of the ring unity of the quotient. (Contributed by AV, 17-Mar-2025.)
Hypotheses
Ref Expression
rngqiprngfu.r (𝜑𝑅 ∈ Rng)
rngqiprngfu.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rngqiprngfu.j 𝐽 = (𝑅s 𝐼)
rngqiprngfu.u (𝜑𝐽 ∈ Ring)
rngqiprngfu.b 𝐵 = (Base‘𝑅)
rngqiprngfu.t · = (.r𝑅)
rngqiprngfu.1 1 = (1r𝐽)
rngqiprngfu.g = (𝑅 ~QG 𝐼)
rngqiprngfu.q 𝑄 = (𝑅 /s )
rngqiprngfu.v (𝜑𝑄 ∈ Ring)
rngqiprngfu.e (𝜑𝐸 ∈ (1r𝑄))
rngqiprngfu.m = (-g𝑅)
rngqiprngfu.a + = (+g𝑅)
rngqiprngfu.n 𝑈 = ((𝐸 ( 1 · 𝐸)) + 1 )
Assertion
Ref Expression
rngqiprngu (𝜑 → (1r𝑅) = 𝑈)

Proof of Theorem rngqiprngu
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . 4 (𝑄 ×s 𝐽) = (𝑄 ×s 𝐽)
2 rngqiprngfu.v . . . 4 (𝜑𝑄 ∈ Ring)
3 rngqiprngfu.u . . . 4 (𝜑𝐽 ∈ Ring)
41, 2, 3xpsringd 20346 . . 3 (𝜑 → (𝑄 ×s 𝐽) ∈ Ring)
5 rngqiprngfu.r . . 3 (𝜑𝑅 ∈ Rng)
6 rngqiprngfu.i . . . . 5 (𝜑𝐼 ∈ (2Ideal‘𝑅))
7 rngqiprngfu.j . . . . 5 𝐽 = (𝑅s 𝐼)
8 rngqiprngfu.b . . . . 5 𝐵 = (Base‘𝑅)
9 rngqiprngfu.t . . . . 5 · = (.r𝑅)
10 rngqiprngfu.1 . . . . 5 1 = (1r𝐽)
11 rngqiprngfu.g . . . . 5 = (𝑅 ~QG 𝐼)
12 rngqiprngfu.q . . . . 5 𝑄 = (𝑅 /s )
13 eqid 2735 . . . . 5 (Base‘𝑄) = (Base‘𝑄)
14 eqid 2735 . . . . 5 (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩) = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
155, 6, 7, 3, 8, 9, 10, 11, 12, 13, 1, 14rngqiprngim 21332 . . . 4 (𝜑 → (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩) ∈ (𝑅 RngIso (𝑄 ×s 𝐽)))
16 rngimcnv 20473 . . . 4 ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩) ∈ (𝑅 RngIso (𝑄 ×s 𝐽)) → (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩) ∈ ((𝑄 ×s 𝐽) RngIso 𝑅))
1715, 16syl 17 . . 3 (𝜑(𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩) ∈ ((𝑄 ×s 𝐽) RngIso 𝑅))
18 rngisomring1 20485 . . 3 (((𝑄 ×s 𝐽) ∈ Ring ∧ 𝑅 ∈ Rng ∧ (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩) ∈ ((𝑄 ×s 𝐽) RngIso 𝑅)) → (1r𝑅) = ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘(1r‘(𝑄 ×s 𝐽))))
194, 5, 17, 18syl3anc 1370 . 2 (𝜑 → (1r𝑅) = ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘(1r‘(𝑄 ×s 𝐽))))
20 rngqiprngfu.e . . . . 5 (𝜑𝐸 ∈ (1r𝑄))
21 rngqiprngfu.m . . . . 5 = (-g𝑅)
22 rngqiprngfu.a . . . . 5 + = (+g𝑅)
23 rngqiprngfu.n . . . . 5 𝑈 = ((𝐸 ( 1 · 𝐸)) + 1 )
245, 6, 7, 3, 8, 9, 10, 11, 12, 2, 20, 21, 22, 23, 14rngqiprngfu 21345 . . . 4 (𝜑 → ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘𝑈) = ⟨[𝐸] , 1 ⟩)
255, 6, 7, 3, 8, 9, 10, 11, 12, 2, 20, 21, 22, 23, 1rngqipring1 21344 . . . 4 (𝜑 → (1r‘(𝑄 ×s 𝐽)) = ⟨[𝐸] , 1 ⟩)
2624, 25eqtr4d 2778 . . 3 (𝜑 → ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘𝑈) = (1r‘(𝑄 ×s 𝐽)))
27 eqid 2735 . . . . . 6 (Base‘(𝑄 ×s 𝐽)) = (Base‘(𝑄 ×s 𝐽))
288, 27rngimf1o 20471 . . . . 5 ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩) ∈ (𝑅 RngIso (𝑄 ×s 𝐽)) → (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩):𝐵1-1-onto→(Base‘(𝑄 ×s 𝐽)))
2915, 28syl 17 . . . 4 (𝜑 → (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩):𝐵1-1-onto→(Base‘(𝑄 ×s 𝐽)))
305, 6, 7, 3, 8, 9, 10, 11, 12, 2, 20, 21, 22, 23rngqiprngfulem3 21341 . . . 4 (𝜑𝑈𝐵)
31 eqid 2735 . . . . . 6 (1r‘(𝑄 ×s 𝐽)) = (1r‘(𝑄 ×s 𝐽))
3227, 31ringidcl 20280 . . . . 5 ((𝑄 ×s 𝐽) ∈ Ring → (1r‘(𝑄 ×s 𝐽)) ∈ (Base‘(𝑄 ×s 𝐽)))
334, 32syl 17 . . . 4 (𝜑 → (1r‘(𝑄 ×s 𝐽)) ∈ (Base‘(𝑄 ×s 𝐽)))
34 f1ocnvfvb 7299 . . . 4 (((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩):𝐵1-1-onto→(Base‘(𝑄 ×s 𝐽)) ∧ 𝑈𝐵 ∧ (1r‘(𝑄 ×s 𝐽)) ∈ (Base‘(𝑄 ×s 𝐽))) → (((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘𝑈) = (1r‘(𝑄 ×s 𝐽)) ↔ ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘(1r‘(𝑄 ×s 𝐽))) = 𝑈))
3529, 30, 33, 34syl3anc 1370 . . 3 (𝜑 → (((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘𝑈) = (1r‘(𝑄 ×s 𝐽)) ↔ ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘(1r‘(𝑄 ×s 𝐽))) = 𝑈))
3626, 35mpbid 232 . 2 (𝜑 → ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘(1r‘(𝑄 ×s 𝐽))) = 𝑈)
3719, 36eqtrd 2775 1 (𝜑 → (1r𝑅) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  cop 4637  cmpt 5231  ccnv 5688  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  [cec 8742  Basecbs 17245  s cress 17274  +gcplusg 17298  .rcmulr 17299   /s cqus 17552   ×s cxps 17553  -gcsg 18966   ~QG cqg 19153  Rngcrng 20170  1rcur 20199  Ringcrg 20251   RngIso crngim 20452  2Idealc2idl 21277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-ec 8746  df-qs 8750  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-prds 17494  df-imas 17555  df-qus 17556  df-xps 17557  df-mgm 18666  df-mgmhm 18718  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-nsg 19155  df-eqg 19156  df-ghm 19244  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-rnghm 20453  df-rngim 20454  df-subrng 20563  df-lss 20948  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-2idl 21278
This theorem is referenced by:  ring2idlqus1  21347
  Copyright terms: Public domain W3C validator