MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprngu Structured version   Visualization version   GIF version

Theorem rngqiprngu 21243
Description: If a non-unital ring has a (two-sided) ideal which is unital, and the quotient of the ring and the ideal is also unital, then the ring is also unital with a ring unity which can be constructed from the ring unity of the ideal and a representative of the ring unity of the quotient. (Contributed by AV, 17-Mar-2025.)
Hypotheses
Ref Expression
rngqiprngfu.r (𝜑𝑅 ∈ Rng)
rngqiprngfu.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rngqiprngfu.j 𝐽 = (𝑅s 𝐼)
rngqiprngfu.u (𝜑𝐽 ∈ Ring)
rngqiprngfu.b 𝐵 = (Base‘𝑅)
rngqiprngfu.t · = (.r𝑅)
rngqiprngfu.1 1 = (1r𝐽)
rngqiprngfu.g = (𝑅 ~QG 𝐼)
rngqiprngfu.q 𝑄 = (𝑅 /s )
rngqiprngfu.v (𝜑𝑄 ∈ Ring)
rngqiprngfu.e (𝜑𝐸 ∈ (1r𝑄))
rngqiprngfu.m = (-g𝑅)
rngqiprngfu.a + = (+g𝑅)
rngqiprngfu.n 𝑈 = ((𝐸 ( 1 · 𝐸)) + 1 )
Assertion
Ref Expression
rngqiprngu (𝜑 → (1r𝑅) = 𝑈)

Proof of Theorem rngqiprngu
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (𝑄 ×s 𝐽) = (𝑄 ×s 𝐽)
2 rngqiprngfu.v . . . 4 (𝜑𝑄 ∈ Ring)
3 rngqiprngfu.u . . . 4 (𝜑𝐽 ∈ Ring)
41, 2, 3xpsringd 20235 . . 3 (𝜑 → (𝑄 ×s 𝐽) ∈ Ring)
5 rngqiprngfu.r . . 3 (𝜑𝑅 ∈ Rng)
6 rngqiprngfu.i . . . . 5 (𝜑𝐼 ∈ (2Ideal‘𝑅))
7 rngqiprngfu.j . . . . 5 𝐽 = (𝑅s 𝐼)
8 rngqiprngfu.b . . . . 5 𝐵 = (Base‘𝑅)
9 rngqiprngfu.t . . . . 5 · = (.r𝑅)
10 rngqiprngfu.1 . . . . 5 1 = (1r𝐽)
11 rngqiprngfu.g . . . . 5 = (𝑅 ~QG 𝐼)
12 rngqiprngfu.q . . . . 5 𝑄 = (𝑅 /s )
13 eqid 2729 . . . . 5 (Base‘𝑄) = (Base‘𝑄)
14 eqid 2729 . . . . 5 (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩) = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
155, 6, 7, 3, 8, 9, 10, 11, 12, 13, 1, 14rngqiprngim 21229 . . . 4 (𝜑 → (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩) ∈ (𝑅 RngIso (𝑄 ×s 𝐽)))
16 rngimcnv 20359 . . . 4 ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩) ∈ (𝑅 RngIso (𝑄 ×s 𝐽)) → (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩) ∈ ((𝑄 ×s 𝐽) RngIso 𝑅))
1715, 16syl 17 . . 3 (𝜑(𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩) ∈ ((𝑄 ×s 𝐽) RngIso 𝑅))
18 rngisomring1 20371 . . 3 (((𝑄 ×s 𝐽) ∈ Ring ∧ 𝑅 ∈ Rng ∧ (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩) ∈ ((𝑄 ×s 𝐽) RngIso 𝑅)) → (1r𝑅) = ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘(1r‘(𝑄 ×s 𝐽))))
194, 5, 17, 18syl3anc 1373 . 2 (𝜑 → (1r𝑅) = ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘(1r‘(𝑄 ×s 𝐽))))
20 rngqiprngfu.e . . . . 5 (𝜑𝐸 ∈ (1r𝑄))
21 rngqiprngfu.m . . . . 5 = (-g𝑅)
22 rngqiprngfu.a . . . . 5 + = (+g𝑅)
23 rngqiprngfu.n . . . . 5 𝑈 = ((𝐸 ( 1 · 𝐸)) + 1 )
245, 6, 7, 3, 8, 9, 10, 11, 12, 2, 20, 21, 22, 23, 14rngqiprngfu 21242 . . . 4 (𝜑 → ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘𝑈) = ⟨[𝐸] , 1 ⟩)
255, 6, 7, 3, 8, 9, 10, 11, 12, 2, 20, 21, 22, 23, 1rngqipring1 21241 . . . 4 (𝜑 → (1r‘(𝑄 ×s 𝐽)) = ⟨[𝐸] , 1 ⟩)
2624, 25eqtr4d 2767 . . 3 (𝜑 → ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘𝑈) = (1r‘(𝑄 ×s 𝐽)))
27 eqid 2729 . . . . . 6 (Base‘(𝑄 ×s 𝐽)) = (Base‘(𝑄 ×s 𝐽))
288, 27rngimf1o 20357 . . . . 5 ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩) ∈ (𝑅 RngIso (𝑄 ×s 𝐽)) → (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩):𝐵1-1-onto→(Base‘(𝑄 ×s 𝐽)))
2915, 28syl 17 . . . 4 (𝜑 → (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩):𝐵1-1-onto→(Base‘(𝑄 ×s 𝐽)))
305, 6, 7, 3, 8, 9, 10, 11, 12, 2, 20, 21, 22, 23rngqiprngfulem3 21238 . . . 4 (𝜑𝑈𝐵)
31 eqid 2729 . . . . . 6 (1r‘(𝑄 ×s 𝐽)) = (1r‘(𝑄 ×s 𝐽))
3227, 31ringidcl 20168 . . . . 5 ((𝑄 ×s 𝐽) ∈ Ring → (1r‘(𝑄 ×s 𝐽)) ∈ (Base‘(𝑄 ×s 𝐽)))
334, 32syl 17 . . . 4 (𝜑 → (1r‘(𝑄 ×s 𝐽)) ∈ (Base‘(𝑄 ×s 𝐽)))
34 f1ocnvfvb 7220 . . . 4 (((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩):𝐵1-1-onto→(Base‘(𝑄 ×s 𝐽)) ∧ 𝑈𝐵 ∧ (1r‘(𝑄 ×s 𝐽)) ∈ (Base‘(𝑄 ×s 𝐽))) → (((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘𝑈) = (1r‘(𝑄 ×s 𝐽)) ↔ ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘(1r‘(𝑄 ×s 𝐽))) = 𝑈))
3529, 30, 33, 34syl3anc 1373 . . 3 (𝜑 → (((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘𝑈) = (1r‘(𝑄 ×s 𝐽)) ↔ ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘(1r‘(𝑄 ×s 𝐽))) = 𝑈))
3626, 35mpbid 232 . 2 (𝜑 → ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘(1r‘(𝑄 ×s 𝐽))) = 𝑈)
3719, 36eqtrd 2764 1 (𝜑 → (1r𝑅) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  cop 4585  cmpt 5176  ccnv 5622  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  [cec 8630  Basecbs 17138  s cress 17159  +gcplusg 17179  .rcmulr 17180   /s cqus 17427   ×s cxps 17428  -gcsg 18832   ~QG cqg 19019  Rngcrng 20055  1rcur 20084  Ringcrg 20136   RngIso crngim 20338  2Idealc2idl 21174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-ec 8634  df-qs 8638  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-prds 17369  df-imas 17430  df-qus 17431  df-xps 17432  df-mgm 18532  df-mgmhm 18584  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-nsg 19021  df-eqg 19022  df-ghm 19110  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-rnghm 20339  df-rngim 20340  df-subrng 20449  df-lss 20853  df-sra 21095  df-rgmod 21096  df-lidl 21133  df-2idl 21175
This theorem is referenced by:  ring2idlqus1  21244
  Copyright terms: Public domain W3C validator