MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprngu Structured version   Visualization version   GIF version

Theorem rngqiprngu 21351
Description: If a non-unital ring has a (two-sided) ideal which is unital, and the quotient of the ring and the ideal is also unital, then the ring is also unital with a ring unity which can be constructed from the ring unity of the ideal and a representative of the ring unity of the quotient. (Contributed by AV, 17-Mar-2025.)
Hypotheses
Ref Expression
rngqiprngfu.r (𝜑𝑅 ∈ Rng)
rngqiprngfu.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rngqiprngfu.j 𝐽 = (𝑅s 𝐼)
rngqiprngfu.u (𝜑𝐽 ∈ Ring)
rngqiprngfu.b 𝐵 = (Base‘𝑅)
rngqiprngfu.t · = (.r𝑅)
rngqiprngfu.1 1 = (1r𝐽)
rngqiprngfu.g = (𝑅 ~QG 𝐼)
rngqiprngfu.q 𝑄 = (𝑅 /s )
rngqiprngfu.v (𝜑𝑄 ∈ Ring)
rngqiprngfu.e (𝜑𝐸 ∈ (1r𝑄))
rngqiprngfu.m = (-g𝑅)
rngqiprngfu.a + = (+g𝑅)
rngqiprngfu.n 𝑈 = ((𝐸 ( 1 · 𝐸)) + 1 )
Assertion
Ref Expression
rngqiprngu (𝜑 → (1r𝑅) = 𝑈)

Proof of Theorem rngqiprngu
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . 4 (𝑄 ×s 𝐽) = (𝑄 ×s 𝐽)
2 rngqiprngfu.v . . . 4 (𝜑𝑄 ∈ Ring)
3 rngqiprngfu.u . . . 4 (𝜑𝐽 ∈ Ring)
41, 2, 3xpsringd 20355 . . 3 (𝜑 → (𝑄 ×s 𝐽) ∈ Ring)
5 rngqiprngfu.r . . 3 (𝜑𝑅 ∈ Rng)
6 rngqiprngfu.i . . . . 5 (𝜑𝐼 ∈ (2Ideal‘𝑅))
7 rngqiprngfu.j . . . . 5 𝐽 = (𝑅s 𝐼)
8 rngqiprngfu.b . . . . 5 𝐵 = (Base‘𝑅)
9 rngqiprngfu.t . . . . 5 · = (.r𝑅)
10 rngqiprngfu.1 . . . . 5 1 = (1r𝐽)
11 rngqiprngfu.g . . . . 5 = (𝑅 ~QG 𝐼)
12 rngqiprngfu.q . . . . 5 𝑄 = (𝑅 /s )
13 eqid 2740 . . . . 5 (Base‘𝑄) = (Base‘𝑄)
14 eqid 2740 . . . . 5 (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩) = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
155, 6, 7, 3, 8, 9, 10, 11, 12, 13, 1, 14rngqiprngim 21337 . . . 4 (𝜑 → (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩) ∈ (𝑅 RngIso (𝑄 ×s 𝐽)))
16 rngimcnv 20482 . . . 4 ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩) ∈ (𝑅 RngIso (𝑄 ×s 𝐽)) → (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩) ∈ ((𝑄 ×s 𝐽) RngIso 𝑅))
1715, 16syl 17 . . 3 (𝜑(𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩) ∈ ((𝑄 ×s 𝐽) RngIso 𝑅))
18 rngisomring1 20494 . . 3 (((𝑄 ×s 𝐽) ∈ Ring ∧ 𝑅 ∈ Rng ∧ (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩) ∈ ((𝑄 ×s 𝐽) RngIso 𝑅)) → (1r𝑅) = ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘(1r‘(𝑄 ×s 𝐽))))
194, 5, 17, 18syl3anc 1371 . 2 (𝜑 → (1r𝑅) = ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘(1r‘(𝑄 ×s 𝐽))))
20 rngqiprngfu.e . . . . 5 (𝜑𝐸 ∈ (1r𝑄))
21 rngqiprngfu.m . . . . 5 = (-g𝑅)
22 rngqiprngfu.a . . . . 5 + = (+g𝑅)
23 rngqiprngfu.n . . . . 5 𝑈 = ((𝐸 ( 1 · 𝐸)) + 1 )
245, 6, 7, 3, 8, 9, 10, 11, 12, 2, 20, 21, 22, 23, 14rngqiprngfu 21350 . . . 4 (𝜑 → ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘𝑈) = ⟨[𝐸] , 1 ⟩)
255, 6, 7, 3, 8, 9, 10, 11, 12, 2, 20, 21, 22, 23, 1rngqipring1 21349 . . . 4 (𝜑 → (1r‘(𝑄 ×s 𝐽)) = ⟨[𝐸] , 1 ⟩)
2624, 25eqtr4d 2783 . . 3 (𝜑 → ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘𝑈) = (1r‘(𝑄 ×s 𝐽)))
27 eqid 2740 . . . . . 6 (Base‘(𝑄 ×s 𝐽)) = (Base‘(𝑄 ×s 𝐽))
288, 27rngimf1o 20480 . . . . 5 ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩) ∈ (𝑅 RngIso (𝑄 ×s 𝐽)) → (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩):𝐵1-1-onto→(Base‘(𝑄 ×s 𝐽)))
2915, 28syl 17 . . . 4 (𝜑 → (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩):𝐵1-1-onto→(Base‘(𝑄 ×s 𝐽)))
305, 6, 7, 3, 8, 9, 10, 11, 12, 2, 20, 21, 22, 23rngqiprngfulem3 21346 . . . 4 (𝜑𝑈𝐵)
31 eqid 2740 . . . . . 6 (1r‘(𝑄 ×s 𝐽)) = (1r‘(𝑄 ×s 𝐽))
3227, 31ringidcl 20289 . . . . 5 ((𝑄 ×s 𝐽) ∈ Ring → (1r‘(𝑄 ×s 𝐽)) ∈ (Base‘(𝑄 ×s 𝐽)))
334, 32syl 17 . . . 4 (𝜑 → (1r‘(𝑄 ×s 𝐽)) ∈ (Base‘(𝑄 ×s 𝐽)))
34 f1ocnvfvb 7315 . . . 4 (((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩):𝐵1-1-onto→(Base‘(𝑄 ×s 𝐽)) ∧ 𝑈𝐵 ∧ (1r‘(𝑄 ×s 𝐽)) ∈ (Base‘(𝑄 ×s 𝐽))) → (((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘𝑈) = (1r‘(𝑄 ×s 𝐽)) ↔ ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘(1r‘(𝑄 ×s 𝐽))) = 𝑈))
3529, 30, 33, 34syl3anc 1371 . . 3 (𝜑 → (((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘𝑈) = (1r‘(𝑄 ×s 𝐽)) ↔ ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘(1r‘(𝑄 ×s 𝐽))) = 𝑈))
3626, 35mpbid 232 . 2 (𝜑 → ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘(1r‘(𝑄 ×s 𝐽))) = 𝑈)
3719, 36eqtrd 2780 1 (𝜑 → (1r𝑅) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  cop 4654  cmpt 5249  ccnv 5699  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  [cec 8761  Basecbs 17258  s cress 17287  +gcplusg 17311  .rcmulr 17312   /s cqus 17565   ×s cxps 17566  -gcsg 18975   ~QG cqg 19162  Rngcrng 20179  1rcur 20208  Ringcrg 20260   RngIso crngim 20461  2Idealc2idl 21282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-imas 17568  df-qus 17569  df-xps 17570  df-mgm 18678  df-mgmhm 18730  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-nsg 19164  df-eqg 19165  df-ghm 19253  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-rnghm 20462  df-rngim 20463  df-subrng 20572  df-lss 20953  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-2idl 21283
This theorem is referenced by:  ring2idlqus1  21352
  Copyright terms: Public domain W3C validator