MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprngu Structured version   Visualization version   GIF version

Theorem rngqiprngu 21279
Description: If a non-unital ring has a (two-sided) ideal which is unital, and the quotient of the ring and the ideal is also unital, then the ring is also unital with a ring unity which can be constructed from the ring unity of the ideal and a representative of the ring unity of the quotient. (Contributed by AV, 17-Mar-2025.)
Hypotheses
Ref Expression
rngqiprngfu.r (𝜑𝑅 ∈ Rng)
rngqiprngfu.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rngqiprngfu.j 𝐽 = (𝑅s 𝐼)
rngqiprngfu.u (𝜑𝐽 ∈ Ring)
rngqiprngfu.b 𝐵 = (Base‘𝑅)
rngqiprngfu.t · = (.r𝑅)
rngqiprngfu.1 1 = (1r𝐽)
rngqiprngfu.g = (𝑅 ~QG 𝐼)
rngqiprngfu.q 𝑄 = (𝑅 /s )
rngqiprngfu.v (𝜑𝑄 ∈ Ring)
rngqiprngfu.e (𝜑𝐸 ∈ (1r𝑄))
rngqiprngfu.m = (-g𝑅)
rngqiprngfu.a + = (+g𝑅)
rngqiprngfu.n 𝑈 = ((𝐸 ( 1 · 𝐸)) + 1 )
Assertion
Ref Expression
rngqiprngu (𝜑 → (1r𝑅) = 𝑈)

Proof of Theorem rngqiprngu
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . 4 (𝑄 ×s 𝐽) = (𝑄 ×s 𝐽)
2 rngqiprngfu.v . . . 4 (𝜑𝑄 ∈ Ring)
3 rngqiprngfu.u . . . 4 (𝜑𝐽 ∈ Ring)
41, 2, 3xpsringd 20292 . . 3 (𝜑 → (𝑄 ×s 𝐽) ∈ Ring)
5 rngqiprngfu.r . . 3 (𝜑𝑅 ∈ Rng)
6 rngqiprngfu.i . . . . 5 (𝜑𝐼 ∈ (2Ideal‘𝑅))
7 rngqiprngfu.j . . . . 5 𝐽 = (𝑅s 𝐼)
8 rngqiprngfu.b . . . . 5 𝐵 = (Base‘𝑅)
9 rngqiprngfu.t . . . . 5 · = (.r𝑅)
10 rngqiprngfu.1 . . . . 5 1 = (1r𝐽)
11 rngqiprngfu.g . . . . 5 = (𝑅 ~QG 𝐼)
12 rngqiprngfu.q . . . . 5 𝑄 = (𝑅 /s )
13 eqid 2735 . . . . 5 (Base‘𝑄) = (Base‘𝑄)
14 eqid 2735 . . . . 5 (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩) = (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)
155, 6, 7, 3, 8, 9, 10, 11, 12, 13, 1, 14rngqiprngim 21265 . . . 4 (𝜑 → (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩) ∈ (𝑅 RngIso (𝑄 ×s 𝐽)))
16 rngimcnv 20416 . . . 4 ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩) ∈ (𝑅 RngIso (𝑄 ×s 𝐽)) → (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩) ∈ ((𝑄 ×s 𝐽) RngIso 𝑅))
1715, 16syl 17 . . 3 (𝜑(𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩) ∈ ((𝑄 ×s 𝐽) RngIso 𝑅))
18 rngisomring1 20428 . . 3 (((𝑄 ×s 𝐽) ∈ Ring ∧ 𝑅 ∈ Rng ∧ (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩) ∈ ((𝑄 ×s 𝐽) RngIso 𝑅)) → (1r𝑅) = ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘(1r‘(𝑄 ×s 𝐽))))
194, 5, 17, 18syl3anc 1373 . 2 (𝜑 → (1r𝑅) = ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘(1r‘(𝑄 ×s 𝐽))))
20 rngqiprngfu.e . . . . 5 (𝜑𝐸 ∈ (1r𝑄))
21 rngqiprngfu.m . . . . 5 = (-g𝑅)
22 rngqiprngfu.a . . . . 5 + = (+g𝑅)
23 rngqiprngfu.n . . . . 5 𝑈 = ((𝐸 ( 1 · 𝐸)) + 1 )
245, 6, 7, 3, 8, 9, 10, 11, 12, 2, 20, 21, 22, 23, 14rngqiprngfu 21278 . . . 4 (𝜑 → ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘𝑈) = ⟨[𝐸] , 1 ⟩)
255, 6, 7, 3, 8, 9, 10, 11, 12, 2, 20, 21, 22, 23, 1rngqipring1 21277 . . . 4 (𝜑 → (1r‘(𝑄 ×s 𝐽)) = ⟨[𝐸] , 1 ⟩)
2624, 25eqtr4d 2773 . . 3 (𝜑 → ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘𝑈) = (1r‘(𝑄 ×s 𝐽)))
27 eqid 2735 . . . . . 6 (Base‘(𝑄 ×s 𝐽)) = (Base‘(𝑄 ×s 𝐽))
288, 27rngimf1o 20414 . . . . 5 ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩) ∈ (𝑅 RngIso (𝑄 ×s 𝐽)) → (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩):𝐵1-1-onto→(Base‘(𝑄 ×s 𝐽)))
2915, 28syl 17 . . . 4 (𝜑 → (𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩):𝐵1-1-onto→(Base‘(𝑄 ×s 𝐽)))
305, 6, 7, 3, 8, 9, 10, 11, 12, 2, 20, 21, 22, 23rngqiprngfulem3 21274 . . . 4 (𝜑𝑈𝐵)
31 eqid 2735 . . . . . 6 (1r‘(𝑄 ×s 𝐽)) = (1r‘(𝑄 ×s 𝐽))
3227, 31ringidcl 20225 . . . . 5 ((𝑄 ×s 𝐽) ∈ Ring → (1r‘(𝑄 ×s 𝐽)) ∈ (Base‘(𝑄 ×s 𝐽)))
334, 32syl 17 . . . 4 (𝜑 → (1r‘(𝑄 ×s 𝐽)) ∈ (Base‘(𝑄 ×s 𝐽)))
34 f1ocnvfvb 7272 . . . 4 (((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩):𝐵1-1-onto→(Base‘(𝑄 ×s 𝐽)) ∧ 𝑈𝐵 ∧ (1r‘(𝑄 ×s 𝐽)) ∈ (Base‘(𝑄 ×s 𝐽))) → (((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘𝑈) = (1r‘(𝑄 ×s 𝐽)) ↔ ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘(1r‘(𝑄 ×s 𝐽))) = 𝑈))
3529, 30, 33, 34syl3anc 1373 . . 3 (𝜑 → (((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘𝑈) = (1r‘(𝑄 ×s 𝐽)) ↔ ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘(1r‘(𝑄 ×s 𝐽))) = 𝑈))
3626, 35mpbid 232 . 2 (𝜑 → ((𝑥𝐵 ↦ ⟨[𝑥] , ( 1 · 𝑥)⟩)‘(1r‘(𝑄 ×s 𝐽))) = 𝑈)
3719, 36eqtrd 2770 1 (𝜑 → (1r𝑅) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  cop 4607  cmpt 5201  ccnv 5653  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  [cec 8717  Basecbs 17228  s cress 17251  +gcplusg 17271  .rcmulr 17272   /s cqus 17519   ×s cxps 17520  -gcsg 18918   ~QG cqg 19105  Rngcrng 20112  1rcur 20141  Ringcrg 20193   RngIso crngim 20395  2Idealc2idl 21210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-prds 17461  df-imas 17522  df-qus 17523  df-xps 17524  df-mgm 18618  df-mgmhm 18670  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-nsg 19107  df-eqg 19108  df-ghm 19196  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-rnghm 20396  df-rngim 20397  df-subrng 20506  df-lss 20889  df-sra 21131  df-rgmod 21132  df-lidl 21169  df-2idl 21211
This theorem is referenced by:  ring2idlqus1  21280
  Copyright terms: Public domain W3C validator