| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngqiprngu | Structured version Visualization version GIF version | ||
| Description: If a non-unital ring has a (two-sided) ideal which is unital, and the quotient of the ring and the ideal is also unital, then the ring is also unital with a ring unity which can be constructed from the ring unity of the ideal and a representative of the ring unity of the quotient. (Contributed by AV, 17-Mar-2025.) |
| Ref | Expression |
|---|---|
| rngqiprngfu.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rngqiprngfu.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| rngqiprngfu.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| rngqiprngfu.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
| rngqiprngfu.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngqiprngfu.t | ⊢ · = (.r‘𝑅) |
| rngqiprngfu.1 | ⊢ 1 = (1r‘𝐽) |
| rngqiprngfu.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| rngqiprngfu.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
| rngqiprngfu.v | ⊢ (𝜑 → 𝑄 ∈ Ring) |
| rngqiprngfu.e | ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) |
| rngqiprngfu.m | ⊢ − = (-g‘𝑅) |
| rngqiprngfu.a | ⊢ + = (+g‘𝑅) |
| rngqiprngfu.n | ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) |
| Ref | Expression |
|---|---|
| rngqiprngu | ⊢ (𝜑 → (1r‘𝑅) = 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (𝑄 ×s 𝐽) = (𝑄 ×s 𝐽) | |
| 2 | rngqiprngfu.v | . . . 4 ⊢ (𝜑 → 𝑄 ∈ Ring) | |
| 3 | rngqiprngfu.u | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
| 4 | 1, 2, 3 | xpsringd 20248 | . . 3 ⊢ (𝜑 → (𝑄 ×s 𝐽) ∈ Ring) |
| 5 | rngqiprngfu.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 6 | rngqiprngfu.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 7 | rngqiprngfu.j | . . . . 5 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 8 | rngqiprngfu.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 9 | rngqiprngfu.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 10 | rngqiprngfu.1 | . . . . 5 ⊢ 1 = (1r‘𝐽) | |
| 11 | rngqiprngfu.g | . . . . 5 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 12 | rngqiprngfu.q | . . . . 5 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
| 13 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑄) = (Base‘𝑄) | |
| 14 | eqid 2731 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) = (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) | |
| 15 | 5, 6, 7, 3, 8, 9, 10, 11, 12, 13, 1, 14 | rngqiprngim 21239 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ∈ (𝑅 RngIso (𝑄 ×s 𝐽))) |
| 16 | rngimcnv 20372 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ∈ (𝑅 RngIso (𝑄 ×s 𝐽)) → ◡(𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ∈ ((𝑄 ×s 𝐽) RngIso 𝑅)) | |
| 17 | 15, 16 | syl 17 | . . 3 ⊢ (𝜑 → ◡(𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ∈ ((𝑄 ×s 𝐽) RngIso 𝑅)) |
| 18 | rngisomring1 20384 | . . 3 ⊢ (((𝑄 ×s 𝐽) ∈ Ring ∧ 𝑅 ∈ Rng ∧ ◡(𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ∈ ((𝑄 ×s 𝐽) RngIso 𝑅)) → (1r‘𝑅) = (◡(𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉)‘(1r‘(𝑄 ×s 𝐽)))) | |
| 19 | 4, 5, 17, 18 | syl3anc 1373 | . 2 ⊢ (𝜑 → (1r‘𝑅) = (◡(𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉)‘(1r‘(𝑄 ×s 𝐽)))) |
| 20 | rngqiprngfu.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) | |
| 21 | rngqiprngfu.m | . . . . 5 ⊢ − = (-g‘𝑅) | |
| 22 | rngqiprngfu.a | . . . . 5 ⊢ + = (+g‘𝑅) | |
| 23 | rngqiprngfu.n | . . . . 5 ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) | |
| 24 | 5, 6, 7, 3, 8, 9, 10, 11, 12, 2, 20, 21, 22, 23, 14 | rngqiprngfu 21252 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉)‘𝑈) = 〈[𝐸] ∼ , 1 〉) |
| 25 | 5, 6, 7, 3, 8, 9, 10, 11, 12, 2, 20, 21, 22, 23, 1 | rngqipring1 21251 | . . . 4 ⊢ (𝜑 → (1r‘(𝑄 ×s 𝐽)) = 〈[𝐸] ∼ , 1 〉) |
| 26 | 24, 25 | eqtr4d 2769 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉)‘𝑈) = (1r‘(𝑄 ×s 𝐽))) |
| 27 | eqid 2731 | . . . . . 6 ⊢ (Base‘(𝑄 ×s 𝐽)) = (Base‘(𝑄 ×s 𝐽)) | |
| 28 | 8, 27 | rngimf1o 20370 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉) ∈ (𝑅 RngIso (𝑄 ×s 𝐽)) → (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉):𝐵–1-1-onto→(Base‘(𝑄 ×s 𝐽))) |
| 29 | 15, 28 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉):𝐵–1-1-onto→(Base‘(𝑄 ×s 𝐽))) |
| 30 | 5, 6, 7, 3, 8, 9, 10, 11, 12, 2, 20, 21, 22, 23 | rngqiprngfulem3 21248 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝐵) |
| 31 | eqid 2731 | . . . . . 6 ⊢ (1r‘(𝑄 ×s 𝐽)) = (1r‘(𝑄 ×s 𝐽)) | |
| 32 | 27, 31 | ringidcl 20181 | . . . . 5 ⊢ ((𝑄 ×s 𝐽) ∈ Ring → (1r‘(𝑄 ×s 𝐽)) ∈ (Base‘(𝑄 ×s 𝐽))) |
| 33 | 4, 32 | syl 17 | . . . 4 ⊢ (𝜑 → (1r‘(𝑄 ×s 𝐽)) ∈ (Base‘(𝑄 ×s 𝐽))) |
| 34 | f1ocnvfvb 7213 | . . . 4 ⊢ (((𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉):𝐵–1-1-onto→(Base‘(𝑄 ×s 𝐽)) ∧ 𝑈 ∈ 𝐵 ∧ (1r‘(𝑄 ×s 𝐽)) ∈ (Base‘(𝑄 ×s 𝐽))) → (((𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉)‘𝑈) = (1r‘(𝑄 ×s 𝐽)) ↔ (◡(𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉)‘(1r‘(𝑄 ×s 𝐽))) = 𝑈)) | |
| 35 | 29, 30, 33, 34 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉)‘𝑈) = (1r‘(𝑄 ×s 𝐽)) ↔ (◡(𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉)‘(1r‘(𝑄 ×s 𝐽))) = 𝑈)) |
| 36 | 26, 35 | mpbid 232 | . 2 ⊢ (𝜑 → (◡(𝑥 ∈ 𝐵 ↦ 〈[𝑥] ∼ , ( 1 · 𝑥)〉)‘(1r‘(𝑄 ×s 𝐽))) = 𝑈) |
| 37 | 19, 36 | eqtrd 2766 | 1 ⊢ (𝜑 → (1r‘𝑅) = 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 〈cop 4582 ↦ cmpt 5172 ◡ccnv 5615 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 [cec 8620 Basecbs 17117 ↾s cress 17138 +gcplusg 17158 .rcmulr 17159 /s cqus 17406 ×s cxps 17407 -gcsg 18845 ~QG cqg 19032 Rngcrng 20068 1rcur 20097 Ringcrg 20149 RngIso crngim 20351 2Idealc2idl 21184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-ec 8624 df-qs 8628 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-hom 17182 df-cco 17183 df-0g 17342 df-prds 17348 df-imas 17409 df-qus 17410 df-xps 17411 df-mgm 18545 df-mgmhm 18597 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 df-sbg 18848 df-subg 19033 df-nsg 19034 df-eqg 19035 df-ghm 19123 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-rnghm 20352 df-rngim 20353 df-subrng 20459 df-lss 20863 df-sra 21105 df-rgmod 21106 df-lidl 21143 df-2idl 21185 |
| This theorem is referenced by: ring2idlqus1 21254 |
| Copyright terms: Public domain | W3C validator |