![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngqiprngu | Structured version Visualization version GIF version |
Description: If a non-unital ring has a (two-sided) ideal which is unital, and the quotient of the ring and the ideal is also unital, then the ring is also unital with a ring unity which can be constructed from the ring unity of the ideal and a representative of the ring unity of the quotient. (Contributed by AV, 17-Mar-2025.) |
Ref | Expression |
---|---|
rngqiprngfu.r | β’ (π β π β Rng) |
rngqiprngfu.i | β’ (π β πΌ β (2Idealβπ )) |
rngqiprngfu.j | β’ π½ = (π βΎs πΌ) |
rngqiprngfu.u | β’ (π β π½ β Ring) |
rngqiprngfu.b | β’ π΅ = (Baseβπ ) |
rngqiprngfu.t | β’ Β· = (.rβπ ) |
rngqiprngfu.1 | β’ 1 = (1rβπ½) |
rngqiprngfu.g | β’ βΌ = (π ~QG πΌ) |
rngqiprngfu.q | β’ π = (π /s βΌ ) |
rngqiprngfu.v | β’ (π β π β Ring) |
rngqiprngfu.e | β’ (π β πΈ β (1rβπ)) |
rngqiprngfu.m | β’ β = (-gβπ ) |
rngqiprngfu.a | β’ + = (+gβπ ) |
rngqiprngfu.n | β’ π = ((πΈ β ( 1 Β· πΈ)) + 1 ) |
Ref | Expression |
---|---|
rngqiprngu | β’ (π β (1rβπ ) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . . 4 β’ (π Γs π½) = (π Γs π½) | |
2 | rngqiprngfu.v | . . . 4 β’ (π β π β Ring) | |
3 | rngqiprngfu.u | . . . 4 β’ (π β π½ β Ring) | |
4 | 1, 2, 3 | xpsringd 20145 | . . 3 β’ (π β (π Γs π½) β Ring) |
5 | rngqiprngfu.r | . . 3 β’ (π β π β Rng) | |
6 | rngqiprngfu.i | . . . . 5 β’ (π β πΌ β (2Idealβπ )) | |
7 | rngqiprngfu.j | . . . . 5 β’ π½ = (π βΎs πΌ) | |
8 | rngqiprngfu.b | . . . . 5 β’ π΅ = (Baseβπ ) | |
9 | rngqiprngfu.t | . . . . 5 β’ Β· = (.rβπ ) | |
10 | rngqiprngfu.1 | . . . . 5 β’ 1 = (1rβπ½) | |
11 | rngqiprngfu.g | . . . . 5 β’ βΌ = (π ~QG πΌ) | |
12 | rngqiprngfu.q | . . . . 5 β’ π = (π /s βΌ ) | |
13 | eqid 2733 | . . . . 5 β’ (Baseβπ) = (Baseβπ) | |
14 | eqid 2733 | . . . . 5 β’ (π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©) = (π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©) | |
15 | 5, 6, 7, 3, 8, 9, 10, 11, 12, 13, 1, 14 | rngqiprngim 46789 | . . . 4 β’ (π β (π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©) β (π RngIsom (π Γs π½))) |
16 | rngimcnv 46705 | . . . 4 β’ ((π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©) β (π RngIsom (π Γs π½)) β β‘(π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©) β ((π Γs π½) RngIsom π )) | |
17 | 15, 16 | syl 17 | . . 3 β’ (π β β‘(π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©) β ((π Γs π½) RngIsom π )) |
18 | rngisomring1 46720 | . . 3 β’ (((π Γs π½) β Ring β§ π β Rng β§ β‘(π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©) β ((π Γs π½) RngIsom π )) β (1rβπ ) = (β‘(π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©)β(1rβ(π Γs π½)))) | |
19 | 4, 5, 17, 18 | syl3anc 1372 | . 2 β’ (π β (1rβπ ) = (β‘(π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©)β(1rβ(π Γs π½)))) |
20 | rngqiprngfu.e | . . . . 5 β’ (π β πΈ β (1rβπ)) | |
21 | rngqiprngfu.m | . . . . 5 β’ β = (-gβπ ) | |
22 | rngqiprngfu.a | . . . . 5 β’ + = (+gβπ ) | |
23 | rngqiprngfu.n | . . . . 5 β’ π = ((πΈ β ( 1 Β· πΈ)) + 1 ) | |
24 | 5, 6, 7, 3, 8, 9, 10, 11, 12, 2, 20, 21, 22, 23, 14 | rngqiprngfu 46802 | . . . 4 β’ (π β ((π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©)βπ) = β¨[πΈ] βΌ , 1 β©) |
25 | 5, 6, 7, 3, 8, 9, 10, 11, 12, 2, 20, 21, 22, 23, 1 | rngqipring1 46801 | . . . 4 β’ (π β (1rβ(π Γs π½)) = β¨[πΈ] βΌ , 1 β©) |
26 | 24, 25 | eqtr4d 2776 | . . 3 β’ (π β ((π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©)βπ) = (1rβ(π Γs π½))) |
27 | eqid 2733 | . . . . . 6 β’ (Baseβ(π Γs π½)) = (Baseβ(π Γs π½)) | |
28 | 8, 27 | rngimf1o 46703 | . . . . 5 β’ ((π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©) β (π RngIsom (π Γs π½)) β (π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©):π΅β1-1-ontoβ(Baseβ(π Γs π½))) |
29 | 15, 28 | syl 17 | . . . 4 β’ (π β (π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©):π΅β1-1-ontoβ(Baseβ(π Γs π½))) |
30 | 5, 6, 7, 3, 8, 9, 10, 11, 12, 2, 20, 21, 22, 23 | rngqiprngfulem3 46798 | . . . 4 β’ (π β π β π΅) |
31 | eqid 2733 | . . . . . 6 β’ (1rβ(π Γs π½)) = (1rβ(π Γs π½)) | |
32 | 27, 31 | ringidcl 20083 | . . . . 5 β’ ((π Γs π½) β Ring β (1rβ(π Γs π½)) β (Baseβ(π Γs π½))) |
33 | 4, 32 | syl 17 | . . . 4 β’ (π β (1rβ(π Γs π½)) β (Baseβ(π Γs π½))) |
34 | f1ocnvfvb 7277 | . . . 4 β’ (((π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©):π΅β1-1-ontoβ(Baseβ(π Γs π½)) β§ π β π΅ β§ (1rβ(π Γs π½)) β (Baseβ(π Γs π½))) β (((π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©)βπ) = (1rβ(π Γs π½)) β (β‘(π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©)β(1rβ(π Γs π½))) = π)) | |
35 | 29, 30, 33, 34 | syl3anc 1372 | . . 3 β’ (π β (((π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©)βπ) = (1rβ(π Γs π½)) β (β‘(π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©)β(1rβ(π Γs π½))) = π)) |
36 | 26, 35 | mpbid 231 | . 2 β’ (π β (β‘(π₯ β π΅ β¦ β¨[π₯] βΌ , ( 1 Β· π₯)β©)β(1rβ(π Γs π½))) = π) |
37 | 19, 36 | eqtrd 2773 | 1 β’ (π β (1rβπ ) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1542 β wcel 2107 β¨cop 4635 β¦ cmpt 5232 β‘ccnv 5676 β1-1-ontoβwf1o 6543 βcfv 6544 (class class class)co 7409 [cec 8701 Basecbs 17144 βΎs cress 17173 +gcplusg 17197 .rcmulr 17198 /s cqus 17451 Γs cxps 17452 -gcsg 18821 ~QG cqg 19002 1rcur 20004 Ringcrg 20056 2Idealc2idl 20856 Rngcrng 46648 RngIsom crngs 46684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-tpos 8211 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-2o 8467 df-er 8703 df-ec 8705 df-qs 8709 df-map 8822 df-ixp 8892 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-hom 17221 df-cco 17222 df-0g 17387 df-prds 17393 df-imas 17454 df-qus 17455 df-xps 17456 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-minusg 18823 df-sbg 18824 df-subg 19003 df-nsg 19004 df-eqg 19005 df-ghm 19090 df-cmn 19650 df-abl 19651 df-mgp 19988 df-ur 20005 df-ring 20058 df-oppr 20150 df-dvdsr 20171 df-unit 20172 df-invr 20202 df-lss 20543 df-sra 20785 df-rgmod 20786 df-lidl 20787 df-2idl 20857 df-mgmhm 46549 df-rng 46649 df-rnghomo 46685 df-rngisom 46686 df-subrng 46725 |
This theorem is referenced by: ring2idlqus1 46804 |
Copyright terms: Public domain | W3C validator |