MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ocnvfv Structured version   Visualization version   GIF version

Theorem f1ocnvfv 7131
Description: Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by Raph Levien, 10-Apr-2004.)
Assertion
Ref Expression
f1ocnvfv ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → ((𝐹𝐶) = 𝐷 → (𝐹𝐷) = 𝐶))

Proof of Theorem f1ocnvfv
StepHypRef Expression
1 fveq2 6756 . . 3 (𝐷 = (𝐹𝐶) → (𝐹𝐷) = (𝐹‘(𝐹𝐶)))
21eqcoms 2746 . 2 ((𝐹𝐶) = 𝐷 → (𝐹𝐷) = (𝐹‘(𝐹𝐶)))
3 f1ocnvfv1 7129 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → (𝐹‘(𝐹𝐶)) = 𝐶)
43eqeq2d 2749 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → ((𝐹𝐷) = (𝐹‘(𝐹𝐶)) ↔ (𝐹𝐷) = 𝐶))
52, 4syl5ib 243 1 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → ((𝐹𝐶) = 𝐷 → (𝐹𝐷) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  ccnv 5579  1-1-ontowf1o 6417  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426
This theorem is referenced by:  f1ocnvfvb  7132  f1oiso2  7203  curry1  7915  curry2  7918  dif1en  8907  mapfienlem2  9095  infxpenc2lem1  9706  axcclem  10144  uzrdgfni  13606  uzrdgsuci  13608  fzennn  13616  axdc4uzlem  13631  seqf1olem1  13690  seqf1olem2  13691  hashginv  13976  sadaddlem  16101  xpsaddlem  17201  xpsvsca  17205  xpsle  17207  catcisolem  17741  mhmf1o  18355  ghmf1o  18779  lmhmf1o  20223  symgtgp  23165  xpsdsval  23442  cnvbraval  30373  madjusmdetlem2  31680  reprpmtf1o  32506  derangenlem  33033  subfacp1lem4  33045  subfacp1lem5  33046  cvmliftlem9  33155  rngoisocnv  36066  cdleme51finvfvN  38496  ltrniotacnvval  38523  dssmapclsntr  41628  mgmhmf1o  45229
  Copyright terms: Public domain W3C validator