MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ocnvfv Structured version   Visualization version   GIF version

Theorem f1ocnvfv 7215
Description: Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by Raph Levien, 10-Apr-2004.)
Assertion
Ref Expression
f1ocnvfv ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → ((𝐹𝐶) = 𝐷 → (𝐹𝐷) = 𝐶))

Proof of Theorem f1ocnvfv
StepHypRef Expression
1 fveq2 6822 . . 3 (𝐷 = (𝐹𝐶) → (𝐹𝐷) = (𝐹‘(𝐹𝐶)))
21eqcoms 2737 . 2 ((𝐹𝐶) = 𝐷 → (𝐹𝐷) = (𝐹‘(𝐹𝐶)))
3 f1ocnvfv1 7213 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → (𝐹‘(𝐹𝐶)) = 𝐶)
43eqeq2d 2740 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → ((𝐹𝐷) = (𝐹‘(𝐹𝐶)) ↔ (𝐹𝐷) = 𝐶))
52, 4imbitrid 244 1 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → ((𝐹𝐶) = 𝐷 → (𝐹𝐷) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ccnv 5618  1-1-ontowf1o 6481  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490
This theorem is referenced by:  f1ocnvfvb  7216  f1oiso2  7289  curry1  8037  curry2  8040  dif1en  9075  mapfienlem2  9296  infxpenc2lem1  9913  axcclem  10351  uzrdgfni  13865  uzrdgsuci  13867  fzennn  13875  axdc4uzlem  13890  seqf1olem1  13948  seqf1olem2  13949  hashginv  14241  sadaddlem  16377  xpsaddlem  17477  xpsvsca  17481  xpsle  17483  catcisolem  18017  mgmhmf1o  18574  mhmf1o  18670  ghmf1o  19127  lmhmf1o  20950  symgtgp  23991  xpsdsval  24267  noseqrdgfn  28205  noseqrdgsuc  28207  cnvbraval  32054  madjusmdetlem2  33795  reprpmtf1o  34594  derangenlem  35148  subfacp1lem4  35160  subfacp1lem5  35161  cvmliftlem9  35270  rngoisocnv  37965  cdleme51finvfvN  40538  ltrniotacnvval  40565  dssmapclsntr  44106  isubgr3stgrlem7  47960
  Copyright terms: Public domain W3C validator