![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ocnvfv | Structured version Visualization version GIF version |
Description: Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by Raph Levien, 10-Apr-2004.) |
Ref | Expression |
---|---|
f1ocnvfv | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹‘𝐶) = 𝐷 → (◡𝐹‘𝐷) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6891 | . . 3 ⊢ (𝐷 = (𝐹‘𝐶) → (◡𝐹‘𝐷) = (◡𝐹‘(𝐹‘𝐶))) | |
2 | 1 | eqcoms 2739 | . 2 ⊢ ((𝐹‘𝐶) = 𝐷 → (◡𝐹‘𝐷) = (◡𝐹‘(𝐹‘𝐶))) |
3 | f1ocnvfv1 7277 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → (◡𝐹‘(𝐹‘𝐶)) = 𝐶) | |
4 | 3 | eqeq2d 2742 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((◡𝐹‘𝐷) = (◡𝐹‘(𝐹‘𝐶)) ↔ (◡𝐹‘𝐷) = 𝐶)) |
5 | 2, 4 | imbitrid 243 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹‘𝐶) = 𝐷 → (◡𝐹‘𝐷) = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ◡ccnv 5675 –1-1-onto→wf1o 6542 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 |
This theorem is referenced by: f1ocnvfvb 7280 f1oiso2 7352 curry1 8093 curry2 8096 dif1en 9163 dif1enOLD 9165 mapfienlem2 9404 infxpenc2lem1 10017 axcclem 10455 uzrdgfni 13928 uzrdgsuci 13930 fzennn 13938 axdc4uzlem 13953 seqf1olem1 14012 seqf1olem2 14013 hashginv 14299 sadaddlem 16412 xpsaddlem 17524 xpsvsca 17528 xpsle 17530 catcisolem 18065 mgmhmf1o 18626 mhmf1o 18719 ghmf1o 19163 lmhmf1o 20802 symgtgp 23831 xpsdsval 24108 cnvbraval 31631 madjusmdetlem2 33107 reprpmtf1o 33937 derangenlem 34461 subfacp1lem4 34473 subfacp1lem5 34474 cvmliftlem9 34583 rngoisocnv 37153 cdleme51finvfvN 39730 ltrniotacnvval 39757 dssmapclsntr 43183 |
Copyright terms: Public domain | W3C validator |