![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ocnvfv | Structured version Visualization version GIF version |
Description: Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by Raph Levien, 10-Apr-2004.) |
Ref | Expression |
---|---|
f1ocnvfv | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹‘𝐶) = 𝐷 → (◡𝐹‘𝐷) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6890 | . . 3 ⊢ (𝐷 = (𝐹‘𝐶) → (◡𝐹‘𝐷) = (◡𝐹‘(𝐹‘𝐶))) | |
2 | 1 | eqcoms 2738 | . 2 ⊢ ((𝐹‘𝐶) = 𝐷 → (◡𝐹‘𝐷) = (◡𝐹‘(𝐹‘𝐶))) |
3 | f1ocnvfv1 7276 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → (◡𝐹‘(𝐹‘𝐶)) = 𝐶) | |
4 | 3 | eqeq2d 2741 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((◡𝐹‘𝐷) = (◡𝐹‘(𝐹‘𝐶)) ↔ (◡𝐹‘𝐷) = 𝐶)) |
5 | 2, 4 | imbitrid 243 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹‘𝐶) = 𝐷 → (◡𝐹‘𝐷) = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ◡ccnv 5674 –1-1-onto→wf1o 6541 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 |
This theorem is referenced by: f1ocnvfvb 7279 f1oiso2 7351 curry1 8092 curry2 8095 dif1en 9162 dif1enOLD 9164 mapfienlem2 9403 infxpenc2lem1 10016 axcclem 10454 uzrdgfni 13927 uzrdgsuci 13929 fzennn 13937 axdc4uzlem 13952 seqf1olem1 14011 seqf1olem2 14012 hashginv 14298 sadaddlem 16411 xpsaddlem 17523 xpsvsca 17527 xpsle 17529 catcisolem 18064 mgmhmf1o 18625 mhmf1o 18718 ghmf1o 19162 lmhmf1o 20801 symgtgp 23830 xpsdsval 24107 cnvbraval 31630 madjusmdetlem2 33106 reprpmtf1o 33936 derangenlem 34460 subfacp1lem4 34472 subfacp1lem5 34473 cvmliftlem9 34582 rngoisocnv 37152 cdleme51finvfvN 39729 ltrniotacnvval 39756 dssmapclsntr 43182 |
Copyright terms: Public domain | W3C validator |