![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ocnvfv | Structured version Visualization version GIF version |
Description: Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by Raph Levien, 10-Apr-2004.) |
Ref | Expression |
---|---|
f1ocnvfv | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹‘𝐶) = 𝐷 → (◡𝐹‘𝐷) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6896 | . . 3 ⊢ (𝐷 = (𝐹‘𝐶) → (◡𝐹‘𝐷) = (◡𝐹‘(𝐹‘𝐶))) | |
2 | 1 | eqcoms 2733 | . 2 ⊢ ((𝐹‘𝐶) = 𝐷 → (◡𝐹‘𝐷) = (◡𝐹‘(𝐹‘𝐶))) |
3 | f1ocnvfv1 7285 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → (◡𝐹‘(𝐹‘𝐶)) = 𝐶) | |
4 | 3 | eqeq2d 2736 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((◡𝐹‘𝐷) = (◡𝐹‘(𝐹‘𝐶)) ↔ (◡𝐹‘𝐷) = 𝐶)) |
5 | 2, 4 | imbitrid 243 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹‘𝐶) = 𝐷 → (◡𝐹‘𝐷) = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ◡ccnv 5677 –1-1-onto→wf1o 6548 ‘cfv 6549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 |
This theorem is referenced by: f1ocnvfvb 7288 f1oiso2 7359 curry1 8109 curry2 8112 dif1en 9185 dif1enOLD 9187 mapfienlem2 9431 infxpenc2lem1 10044 axcclem 10482 uzrdgfni 13959 uzrdgsuci 13961 fzennn 13969 axdc4uzlem 13984 seqf1olem1 14042 seqf1olem2 14043 hashginv 14329 sadaddlem 16444 xpsaddlem 17558 xpsvsca 17562 xpsle 17564 catcisolem 18102 mgmhmf1o 18663 mhmf1o 18756 ghmf1o 19211 lmhmf1o 20943 symgtgp 24054 xpsdsval 24331 noseqrdgfn 28229 noseqrdgsuc 28231 cnvbraval 31992 madjusmdetlem2 33560 reprpmtf1o 34389 derangenlem 34912 subfacp1lem4 34924 subfacp1lem5 34925 cvmliftlem9 35034 rngoisocnv 37585 cdleme51finvfvN 40158 ltrniotacnvval 40185 dssmapclsntr 43701 |
Copyright terms: Public domain | W3C validator |