| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ocnvfv | Structured version Visualization version GIF version | ||
| Description: Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by Raph Levien, 10-Apr-2004.) |
| Ref | Expression |
|---|---|
| f1ocnvfv | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹‘𝐶) = 𝐷 → (◡𝐹‘𝐷) = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6876 | . . 3 ⊢ (𝐷 = (𝐹‘𝐶) → (◡𝐹‘𝐷) = (◡𝐹‘(𝐹‘𝐶))) | |
| 2 | 1 | eqcoms 2743 | . 2 ⊢ ((𝐹‘𝐶) = 𝐷 → (◡𝐹‘𝐷) = (◡𝐹‘(𝐹‘𝐶))) |
| 3 | f1ocnvfv1 7269 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → (◡𝐹‘(𝐹‘𝐶)) = 𝐶) | |
| 4 | 3 | eqeq2d 2746 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((◡𝐹‘𝐷) = (◡𝐹‘(𝐹‘𝐶)) ↔ (◡𝐹‘𝐷) = 𝐶)) |
| 5 | 2, 4 | imbitrid 244 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹‘𝐶) = 𝐷 → (◡𝐹‘𝐷) = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ◡ccnv 5653 –1-1-onto→wf1o 6530 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 |
| This theorem is referenced by: f1ocnvfvb 7272 f1oiso2 7345 curry1 8103 curry2 8106 dif1en 9174 dif1enOLD 9176 mapfienlem2 9418 infxpenc2lem1 10033 axcclem 10471 uzrdgfni 13976 uzrdgsuci 13978 fzennn 13986 axdc4uzlem 14001 seqf1olem1 14059 seqf1olem2 14060 hashginv 14352 sadaddlem 16485 xpsaddlem 17587 xpsvsca 17591 xpsle 17593 catcisolem 18123 mgmhmf1o 18678 mhmf1o 18774 ghmf1o 19231 lmhmf1o 21004 symgtgp 24044 xpsdsval 24320 noseqrdgfn 28252 noseqrdgsuc 28254 cnvbraval 32091 madjusmdetlem2 33859 reprpmtf1o 34658 derangenlem 35193 subfacp1lem4 35205 subfacp1lem5 35206 cvmliftlem9 35315 rngoisocnv 38005 cdleme51finvfvN 40574 ltrniotacnvval 40601 dssmapclsntr 44153 isubgr3stgrlem7 47984 |
| Copyright terms: Public domain | W3C validator |