| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ocnvfv | Structured version Visualization version GIF version | ||
| Description: Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by Raph Levien, 10-Apr-2004.) |
| Ref | Expression |
|---|---|
| f1ocnvfv | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹‘𝐶) = 𝐷 → (◡𝐹‘𝐷) = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . 3 ⊢ (𝐷 = (𝐹‘𝐶) → (◡𝐹‘𝐷) = (◡𝐹‘(𝐹‘𝐶))) | |
| 2 | 1 | eqcoms 2737 | . 2 ⊢ ((𝐹‘𝐶) = 𝐷 → (◡𝐹‘𝐷) = (◡𝐹‘(𝐹‘𝐶))) |
| 3 | f1ocnvfv1 7213 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → (◡𝐹‘(𝐹‘𝐶)) = 𝐶) | |
| 4 | 3 | eqeq2d 2740 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((◡𝐹‘𝐷) = (◡𝐹‘(𝐹‘𝐶)) ↔ (◡𝐹‘𝐷) = 𝐶)) |
| 5 | 2, 4 | imbitrid 244 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹‘𝐶) = 𝐷 → (◡𝐹‘𝐷) = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ◡ccnv 5618 –1-1-onto→wf1o 6481 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 |
| This theorem is referenced by: f1ocnvfvb 7216 f1oiso2 7289 curry1 8037 curry2 8040 dif1en 9075 mapfienlem2 9296 infxpenc2lem1 9913 axcclem 10351 uzrdgfni 13865 uzrdgsuci 13867 fzennn 13875 axdc4uzlem 13890 seqf1olem1 13948 seqf1olem2 13949 hashginv 14241 sadaddlem 16377 xpsaddlem 17477 xpsvsca 17481 xpsle 17483 catcisolem 18017 mgmhmf1o 18574 mhmf1o 18670 ghmf1o 19127 lmhmf1o 20950 symgtgp 23991 xpsdsval 24267 noseqrdgfn 28205 noseqrdgsuc 28207 cnvbraval 32054 madjusmdetlem2 33795 reprpmtf1o 34594 derangenlem 35148 subfacp1lem4 35160 subfacp1lem5 35161 cvmliftlem9 35270 rngoisocnv 37965 cdleme51finvfvN 40538 ltrniotacnvval 40565 dssmapclsntr 44106 isubgr3stgrlem7 47960 |
| Copyright terms: Public domain | W3C validator |