MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconst2 Structured version   Visualization version   GIF version

Theorem fconst2 7208
Description: A constant function expressed as a Cartesian product. (Contributed by NM, 20-Aug-1999.)
Hypothesis
Ref Expression
fvconst2.1 𝐵 ∈ V
Assertion
Ref Expression
fconst2 (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))

Proof of Theorem fconst2
StepHypRef Expression
1 fvconst2.1 . 2 𝐵 ∈ V
2 fconst2g 7206 . 2 (𝐵 ∈ V → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵})))
31, 2ax-mp 5 1 (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1539  wcel 2107  Vcvv 3464  {csn 4608   × cxp 5665  wf 6538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550
This theorem is referenced by:  imadrhmcl  20771  rrxcph  25381  dvcmul  25936  plyeq0  26205  lnon0  30764  hsn0elch  31214  df0op2  31718  nmop0h  31957  xrge0mulc1cn  33881  matunitlindflem1  37564  poimirlem9  37577  poimir  37601  lfl1  39012  lkr0f  39036  lindsrng01  48331  functermc  49109
  Copyright terms: Public domain W3C validator