MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconst2 Structured version   Visualization version   GIF version

Theorem fconst2 7080
Description: A constant function expressed as a Cartesian product. (Contributed by NM, 20-Aug-1999.)
Hypothesis
Ref Expression
fvconst2.1 𝐵 ∈ V
Assertion
Ref Expression
fconst2 (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))

Proof of Theorem fconst2
StepHypRef Expression
1 fvconst2.1 . 2 𝐵 ∈ V
2 fconst2g 7078 . 2 (𝐵 ∈ V → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵})))
31, 2ax-mp 5 1 (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2106  Vcvv 3432  {csn 4561   × cxp 5587  wf 6429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441
This theorem is referenced by:  rrxcph  24556  dvcmul  25108  plyeq0  25372  lnon0  29160  hsn0elch  29610  df0op2  30114  nmop0h  30353  xrge0mulc1cn  31891  matunitlindflem1  35773  poimirlem9  35786  poimir  35810  lfl1  37084  lkr0f  37108  lindsrng01  45809
  Copyright terms: Public domain W3C validator