MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconst2 Structured version   Visualization version   GIF version

Theorem fconst2 7229
Description: A constant function expressed as a Cartesian product. (Contributed by NM, 20-Aug-1999.)
Hypothesis
Ref Expression
fvconst2.1 𝐵 ∈ V
Assertion
Ref Expression
fconst2 (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))

Proof of Theorem fconst2
StepHypRef Expression
1 fvconst2.1 . 2 𝐵 ∈ V
2 fconst2g 7227 . 2 (𝐵 ∈ V → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵})))
31, 2ax-mp 5 1 (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1538  wcel 2107  Vcvv 3479  {csn 4632   × cxp 5688  wf 6562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pr 5439
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5584  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-fv 6574
This theorem is referenced by:  imadrhmcl  20821  rrxcph  25448  dvcmul  26004  plyeq0  26273  lnon0  30840  hsn0elch  31290  df0op2  31794  nmop0h  32033  xrge0mulc1cn  33915  matunitlindflem1  37615  poimirlem9  37628  poimir  37652  lfl1  39064  lkr0f  39088  lindsrng01  48335
  Copyright terms: Public domain W3C validator