Proof of Theorem plyeq0
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | plyeq0.3 | . . . . 5
⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) | 
| 2 |  | plyeq0.1 | . . . . . . . 8
⊢ (𝜑 → 𝑆 ⊆ ℂ) | 
| 3 |  | 0cnd 11255 | . . . . . . . . 9
⊢ (𝜑 → 0 ∈
ℂ) | 
| 4 | 3 | snssd 4808 | . . . . . . . 8
⊢ (𝜑 → {0} ⊆
ℂ) | 
| 5 | 2, 4 | unssd 4191 | . . . . . . 7
⊢ (𝜑 → (𝑆 ∪ {0}) ⊆
ℂ) | 
| 6 |  | cnex 11237 | . . . . . . 7
⊢ ℂ
∈ V | 
| 7 |  | ssexg 5322 | . . . . . . 7
⊢ (((𝑆 ∪ {0}) ⊆ ℂ
∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V) | 
| 8 | 5, 6, 7 | sylancl 586 | . . . . . 6
⊢ (𝜑 → (𝑆 ∪ {0}) ∈ V) | 
| 9 |  | nn0ex 12534 | . . . . . 6
⊢
ℕ0 ∈ V | 
| 10 |  | elmapg 8880 | . . . . . 6
⊢ (((𝑆 ∪ {0}) ∈ V ∧
ℕ0 ∈ V) → (𝐴 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0}))) | 
| 11 | 8, 9, 10 | sylancl 586 | . . . . 5
⊢ (𝜑 → (𝐴 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0}))) | 
| 12 | 1, 11 | mpbid 232 | . . . 4
⊢ (𝜑 → 𝐴:ℕ0⟶(𝑆 ∪ {0})) | 
| 13 | 12 | ffnd 6736 | . . 3
⊢ (𝜑 → 𝐴 Fn ℕ0) | 
| 14 |  | imadmrn 6087 | . . . 4
⊢ (𝐴 “ dom 𝐴) = ran 𝐴 | 
| 15 |  | fdm 6744 | . . . . . . . . 9
⊢ (𝐴:ℕ0⟶(𝑆 ∪ {0}) → dom 𝐴 =
ℕ0) | 
| 16 |  | fimacnv 6757 | . . . . . . . . 9
⊢ (𝐴:ℕ0⟶(𝑆 ∪ {0}) → (◡𝐴 “ (𝑆 ∪ {0})) =
ℕ0) | 
| 17 | 15, 16 | eqtr4d 2779 | . . . . . . . 8
⊢ (𝐴:ℕ0⟶(𝑆 ∪ {0}) → dom 𝐴 = (◡𝐴 “ (𝑆 ∪ {0}))) | 
| 18 | 12, 17 | syl 17 | . . . . . . 7
⊢ (𝜑 → dom 𝐴 = (◡𝐴 “ (𝑆 ∪ {0}))) | 
| 19 |  | simpr 484 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (◡𝐴 “ (𝑆 ∖ {0})) = ∅) → (◡𝐴 “ (𝑆 ∖ {0})) = ∅) | 
| 20 | 2 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (◡𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → 𝑆 ⊆
ℂ) | 
| 21 |  | plyeq0.2 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈
ℕ0) | 
| 22 | 21 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (◡𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → 𝑁 ∈
ℕ0) | 
| 23 | 1 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (◡𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) | 
| 24 |  | plyeq0.4 | . . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝑁 + 1))) = {0}) | 
| 25 | 24 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (◡𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → (𝐴 “
(ℤ≥‘(𝑁 + 1))) = {0}) | 
| 26 |  | plyeq0.5 | . . . . . . . . . . . . 13
⊢ (𝜑 → 0𝑝 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) | 
| 27 | 26 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (◡𝐴 “ (𝑆 ∖ {0})) ≠ ∅) →
0𝑝 = (𝑧
∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) | 
| 28 |  | eqid 2736 | . . . . . . . . . . . 12
⊢
sup((◡𝐴 “ (𝑆 ∖ {0})), ℝ, < ) = sup((◡𝐴 “ (𝑆 ∖ {0})), ℝ, <
) | 
| 29 |  | simpr 484 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (◡𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → (◡𝐴 “ (𝑆 ∖ {0})) ≠
∅) | 
| 30 | 20, 22, 23, 25, 27, 28, 29 | plyeq0lem 26250 | . . . . . . . . . . 11
⊢  ¬
(𝜑 ∧ (◡𝐴 “ (𝑆 ∖ {0})) ≠
∅) | 
| 31 | 30 | pm2.21i 119 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (◡𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → (◡𝐴 “ (𝑆 ∖ {0})) = ∅) | 
| 32 | 19, 31 | pm2.61dane 3028 | . . . . . . . . 9
⊢ (𝜑 → (◡𝐴 “ (𝑆 ∖ {0})) = ∅) | 
| 33 | 32 | uneq1d 4166 | . . . . . . . 8
⊢ (𝜑 → ((◡𝐴 “ (𝑆 ∖ {0})) ∪ (◡𝐴 “ {0})) = (∅ ∪ (◡𝐴 “ {0}))) | 
| 34 |  | undif1 4475 | . . . . . . . . . 10
⊢ ((𝑆 ∖ {0}) ∪ {0}) =
(𝑆 ∪
{0}) | 
| 35 | 34 | imaeq2i 6075 | . . . . . . . . 9
⊢ (◡𝐴 “ ((𝑆 ∖ {0}) ∪ {0})) = (◡𝐴 “ (𝑆 ∪ {0})) | 
| 36 |  | imaundi 6168 | . . . . . . . . 9
⊢ (◡𝐴 “ ((𝑆 ∖ {0}) ∪ {0})) = ((◡𝐴 “ (𝑆 ∖ {0})) ∪ (◡𝐴 “ {0})) | 
| 37 | 35, 36 | eqtr3i 2766 | . . . . . . . 8
⊢ (◡𝐴 “ (𝑆 ∪ {0})) = ((◡𝐴 “ (𝑆 ∖ {0})) ∪ (◡𝐴 “ {0})) | 
| 38 |  | un0 4393 | . . . . . . . . 9
⊢ ((◡𝐴 “ {0}) ∪ ∅) = (◡𝐴 “ {0}) | 
| 39 |  | uncom 4157 | . . . . . . . . 9
⊢ ((◡𝐴 “ {0}) ∪ ∅) = (∅
∪ (◡𝐴 “ {0})) | 
| 40 | 38, 39 | eqtr3i 2766 | . . . . . . . 8
⊢ (◡𝐴 “ {0}) = (∅ ∪ (◡𝐴 “ {0})) | 
| 41 | 33, 37, 40 | 3eqtr4g 2801 | . . . . . . 7
⊢ (𝜑 → (◡𝐴 “ (𝑆 ∪ {0})) = (◡𝐴 “ {0})) | 
| 42 | 18, 41 | eqtrd 2776 | . . . . . 6
⊢ (𝜑 → dom 𝐴 = (◡𝐴 “ {0})) | 
| 43 |  | eqimss 4041 | . . . . . 6
⊢ (dom
𝐴 = (◡𝐴 “ {0}) → dom 𝐴 ⊆ (◡𝐴 “ {0})) | 
| 44 | 42, 43 | syl 17 | . . . . 5
⊢ (𝜑 → dom 𝐴 ⊆ (◡𝐴 “ {0})) | 
| 45 | 12 | ffund 6739 | . . . . . 6
⊢ (𝜑 → Fun 𝐴) | 
| 46 |  | ssid 4005 | . . . . . 6
⊢ dom 𝐴 ⊆ dom 𝐴 | 
| 47 |  | funimass3 7073 | . . . . . 6
⊢ ((Fun
𝐴 ∧ dom 𝐴 ⊆ dom 𝐴) → ((𝐴 “ dom 𝐴) ⊆ {0} ↔ dom 𝐴 ⊆ (◡𝐴 “ {0}))) | 
| 48 | 45, 46, 47 | sylancl 586 | . . . . 5
⊢ (𝜑 → ((𝐴 “ dom 𝐴) ⊆ {0} ↔ dom 𝐴 ⊆ (◡𝐴 “ {0}))) | 
| 49 | 44, 48 | mpbird 257 | . . . 4
⊢ (𝜑 → (𝐴 “ dom 𝐴) ⊆ {0}) | 
| 50 | 14, 49 | eqsstrrid 4022 | . . 3
⊢ (𝜑 → ran 𝐴 ⊆ {0}) | 
| 51 |  | df-f 6564 | . . 3
⊢ (𝐴:ℕ0⟶{0}
↔ (𝐴 Fn
ℕ0 ∧ ran 𝐴 ⊆ {0})) | 
| 52 | 13, 50, 51 | sylanbrc 583 | . 2
⊢ (𝜑 → 𝐴:ℕ0⟶{0}) | 
| 53 |  | c0ex 11256 | . . 3
⊢ 0 ∈
V | 
| 54 | 53 | fconst2 7226 | . 2
⊢ (𝐴:ℕ0⟶{0}
↔ 𝐴 =
(ℕ0 × {0})) | 
| 55 | 52, 54 | sylib 218 | 1
⊢ (𝜑 → 𝐴 = (ℕ0 ×
{0})) |