MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyeq0 Structured version   Visualization version   GIF version

Theorem plyeq0 26270
Description: If a polynomial is zero at every point (or even just zero at the positive integers), then all the coefficients must be zero. This is the basis for the method of equating coefficients of equal polynomials, and ensures that df-coe 26249 is well-defined. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
plyeq0.1 (𝜑𝑆 ⊆ ℂ)
plyeq0.2 (𝜑𝑁 ∈ ℕ0)
plyeq0.3 (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑m0))
plyeq0.4 (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
plyeq0.5 (𝜑 → 0𝑝 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
Assertion
Ref Expression
plyeq0 (𝜑𝐴 = (ℕ0 × {0}))
Distinct variable groups:   𝑧,𝑘,𝐴   𝑘,𝑁,𝑧   𝜑,𝑘,𝑧   𝑆,𝑘,𝑧

Proof of Theorem plyeq0
StepHypRef Expression
1 plyeq0.3 . . . . 5 (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑m0))
2 plyeq0.1 . . . . . . . 8 (𝜑𝑆 ⊆ ℂ)
3 0cnd 11283 . . . . . . . . 9 (𝜑 → 0 ∈ ℂ)
43snssd 4834 . . . . . . . 8 (𝜑 → {0} ⊆ ℂ)
52, 4unssd 4215 . . . . . . 7 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
6 cnex 11265 . . . . . . 7 ℂ ∈ V
7 ssexg 5341 . . . . . . 7 (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V)
85, 6, 7sylancl 585 . . . . . 6 (𝜑 → (𝑆 ∪ {0}) ∈ V)
9 nn0ex 12559 . . . . . 6 0 ∈ V
10 elmapg 8897 . . . . . 6 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐴 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
118, 9, 10sylancl 585 . . . . 5 (𝜑 → (𝐴 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
121, 11mpbid 232 . . . 4 (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))
1312ffnd 6748 . . 3 (𝜑𝐴 Fn ℕ0)
14 imadmrn 6099 . . . 4 (𝐴 “ dom 𝐴) = ran 𝐴
15 fdm 6756 . . . . . . . . 9 (𝐴:ℕ0⟶(𝑆 ∪ {0}) → dom 𝐴 = ℕ0)
16 fimacnv 6769 . . . . . . . . 9 (𝐴:ℕ0⟶(𝑆 ∪ {0}) → (𝐴 “ (𝑆 ∪ {0})) = ℕ0)
1715, 16eqtr4d 2783 . . . . . . . 8 (𝐴:ℕ0⟶(𝑆 ∪ {0}) → dom 𝐴 = (𝐴 “ (𝑆 ∪ {0})))
1812, 17syl 17 . . . . . . 7 (𝜑 → dom 𝐴 = (𝐴 “ (𝑆 ∪ {0})))
19 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) = ∅) → (𝐴 “ (𝑆 ∖ {0})) = ∅)
202adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → 𝑆 ⊆ ℂ)
21 plyeq0.2 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ0)
2221adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → 𝑁 ∈ ℕ0)
231adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m0))
24 plyeq0.4 . . . . . . . . . . . . 13 (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
2524adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
26 plyeq0.5 . . . . . . . . . . . . 13 (𝜑 → 0𝑝 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
2726adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → 0𝑝 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
28 eqid 2740 . . . . . . . . . . . 12 sup((𝐴 “ (𝑆 ∖ {0})), ℝ, < ) = sup((𝐴 “ (𝑆 ∖ {0})), ℝ, < )
29 simpr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → (𝐴 “ (𝑆 ∖ {0})) ≠ ∅)
3020, 22, 23, 25, 27, 28, 29plyeq0lem 26269 . . . . . . . . . . 11 ¬ (𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅)
3130pm2.21i 119 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → (𝐴 “ (𝑆 ∖ {0})) = ∅)
3219, 31pm2.61dane 3035 . . . . . . . . 9 (𝜑 → (𝐴 “ (𝑆 ∖ {0})) = ∅)
3332uneq1d 4190 . . . . . . . 8 (𝜑 → ((𝐴 “ (𝑆 ∖ {0})) ∪ (𝐴 “ {0})) = (∅ ∪ (𝐴 “ {0})))
34 undif1 4499 . . . . . . . . . 10 ((𝑆 ∖ {0}) ∪ {0}) = (𝑆 ∪ {0})
3534imaeq2i 6087 . . . . . . . . 9 (𝐴 “ ((𝑆 ∖ {0}) ∪ {0})) = (𝐴 “ (𝑆 ∪ {0}))
36 imaundi 6181 . . . . . . . . 9 (𝐴 “ ((𝑆 ∖ {0}) ∪ {0})) = ((𝐴 “ (𝑆 ∖ {0})) ∪ (𝐴 “ {0}))
3735, 36eqtr3i 2770 . . . . . . . 8 (𝐴 “ (𝑆 ∪ {0})) = ((𝐴 “ (𝑆 ∖ {0})) ∪ (𝐴 “ {0}))
38 un0 4417 . . . . . . . . 9 ((𝐴 “ {0}) ∪ ∅) = (𝐴 “ {0})
39 uncom 4181 . . . . . . . . 9 ((𝐴 “ {0}) ∪ ∅) = (∅ ∪ (𝐴 “ {0}))
4038, 39eqtr3i 2770 . . . . . . . 8 (𝐴 “ {0}) = (∅ ∪ (𝐴 “ {0}))
4133, 37, 403eqtr4g 2805 . . . . . . 7 (𝜑 → (𝐴 “ (𝑆 ∪ {0})) = (𝐴 “ {0}))
4218, 41eqtrd 2780 . . . . . 6 (𝜑 → dom 𝐴 = (𝐴 “ {0}))
43 eqimss 4067 . . . . . 6 (dom 𝐴 = (𝐴 “ {0}) → dom 𝐴 ⊆ (𝐴 “ {0}))
4442, 43syl 17 . . . . 5 (𝜑 → dom 𝐴 ⊆ (𝐴 “ {0}))
4512ffund 6751 . . . . . 6 (𝜑 → Fun 𝐴)
46 ssid 4031 . . . . . 6 dom 𝐴 ⊆ dom 𝐴
47 funimass3 7087 . . . . . 6 ((Fun 𝐴 ∧ dom 𝐴 ⊆ dom 𝐴) → ((𝐴 “ dom 𝐴) ⊆ {0} ↔ dom 𝐴 ⊆ (𝐴 “ {0})))
4845, 46, 47sylancl 585 . . . . 5 (𝜑 → ((𝐴 “ dom 𝐴) ⊆ {0} ↔ dom 𝐴 ⊆ (𝐴 “ {0})))
4944, 48mpbird 257 . . . 4 (𝜑 → (𝐴 “ dom 𝐴) ⊆ {0})
5014, 49eqsstrrid 4058 . . 3 (𝜑 → ran 𝐴 ⊆ {0})
51 df-f 6577 . . 3 (𝐴:ℕ0⟶{0} ↔ (𝐴 Fn ℕ0 ∧ ran 𝐴 ⊆ {0}))
5213, 50, 51sylanbrc 582 . 2 (𝜑𝐴:ℕ0⟶{0})
53 c0ex 11284 . . 3 0 ∈ V
5453fconst2 7242 . 2 (𝐴:ℕ0⟶{0} ↔ 𝐴 = (ℕ0 × {0}))
5552, 54sylib 218 1 (𝜑𝐴 = (ℕ0 × {0}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  cdif 3973  cun 3974  wss 3976  c0 4352  {csn 4648  cmpt 5249   × cxp 5698  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  Fun wfun 6567   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  supcsup 9509  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  0cn0 12553  cuz 12903  ...cfz 13567  cexp 14112  Σcsu 15734  0𝑝c0p 25723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-0p 25724
This theorem is referenced by:  coeeulem  26283
  Copyright terms: Public domain W3C validator