MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyeq0 Structured version   Visualization version   GIF version

Theorem plyeq0 25524
Description: If a polynomial is zero at every point (or even just zero at the positive integers), then all the coefficients must be zero. This is the basis for the method of equating coefficients of equal polynomials, and ensures that df-coe 25503 is well-defined. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
plyeq0.1 (𝜑𝑆 ⊆ ℂ)
plyeq0.2 (𝜑𝑁 ∈ ℕ0)
plyeq0.3 (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑m0))
plyeq0.4 (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
plyeq0.5 (𝜑 → 0𝑝 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
Assertion
Ref Expression
plyeq0 (𝜑𝐴 = (ℕ0 × {0}))
Distinct variable groups:   𝑧,𝑘,𝐴   𝑘,𝑁,𝑧   𝜑,𝑘,𝑧   𝑆,𝑘,𝑧

Proof of Theorem plyeq0
StepHypRef Expression
1 plyeq0.3 . . . . 5 (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑m0))
2 plyeq0.1 . . . . . . . 8 (𝜑𝑆 ⊆ ℂ)
3 0cnd 11107 . . . . . . . . 9 (𝜑 → 0 ∈ ℂ)
43snssd 4768 . . . . . . . 8 (𝜑 → {0} ⊆ ℂ)
52, 4unssd 4145 . . . . . . 7 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
6 cnex 11091 . . . . . . 7 ℂ ∈ V
7 ssexg 5279 . . . . . . 7 (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V)
85, 6, 7sylancl 587 . . . . . 6 (𝜑 → (𝑆 ∪ {0}) ∈ V)
9 nn0ex 12378 . . . . . 6 0 ∈ V
10 elmapg 8737 . . . . . 6 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐴 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
118, 9, 10sylancl 587 . . . . 5 (𝜑 → (𝐴 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
121, 11mpbid 231 . . . 4 (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))
1312ffnd 6667 . . 3 (𝜑𝐴 Fn ℕ0)
14 imadmrn 6022 . . . 4 (𝐴 “ dom 𝐴) = ran 𝐴
15 fdm 6675 . . . . . . . . 9 (𝐴:ℕ0⟶(𝑆 ∪ {0}) → dom 𝐴 = ℕ0)
16 fimacnv 6688 . . . . . . . . 9 (𝐴:ℕ0⟶(𝑆 ∪ {0}) → (𝐴 “ (𝑆 ∪ {0})) = ℕ0)
1715, 16eqtr4d 2781 . . . . . . . 8 (𝐴:ℕ0⟶(𝑆 ∪ {0}) → dom 𝐴 = (𝐴 “ (𝑆 ∪ {0})))
1812, 17syl 17 . . . . . . 7 (𝜑 → dom 𝐴 = (𝐴 “ (𝑆 ∪ {0})))
19 simpr 486 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) = ∅) → (𝐴 “ (𝑆 ∖ {0})) = ∅)
202adantr 482 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → 𝑆 ⊆ ℂ)
21 plyeq0.2 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ0)
2221adantr 482 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → 𝑁 ∈ ℕ0)
231adantr 482 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m0))
24 plyeq0.4 . . . . . . . . . . . . 13 (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
2524adantr 482 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
26 plyeq0.5 . . . . . . . . . . . . 13 (𝜑 → 0𝑝 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
2726adantr 482 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → 0𝑝 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
28 eqid 2738 . . . . . . . . . . . 12 sup((𝐴 “ (𝑆 ∖ {0})), ℝ, < ) = sup((𝐴 “ (𝑆 ∖ {0})), ℝ, < )
29 simpr 486 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → (𝐴 “ (𝑆 ∖ {0})) ≠ ∅)
3020, 22, 23, 25, 27, 28, 29plyeq0lem 25523 . . . . . . . . . . 11 ¬ (𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅)
3130pm2.21i 119 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → (𝐴 “ (𝑆 ∖ {0})) = ∅)
3219, 31pm2.61dane 3031 . . . . . . . . 9 (𝜑 → (𝐴 “ (𝑆 ∖ {0})) = ∅)
3332uneq1d 4121 . . . . . . . 8 (𝜑 → ((𝐴 “ (𝑆 ∖ {0})) ∪ (𝐴 “ {0})) = (∅ ∪ (𝐴 “ {0})))
34 undif1 4434 . . . . . . . . . 10 ((𝑆 ∖ {0}) ∪ {0}) = (𝑆 ∪ {0})
3534imaeq2i 6010 . . . . . . . . 9 (𝐴 “ ((𝑆 ∖ {0}) ∪ {0})) = (𝐴 “ (𝑆 ∪ {0}))
36 imaundi 6101 . . . . . . . . 9 (𝐴 “ ((𝑆 ∖ {0}) ∪ {0})) = ((𝐴 “ (𝑆 ∖ {0})) ∪ (𝐴 “ {0}))
3735, 36eqtr3i 2768 . . . . . . . 8 (𝐴 “ (𝑆 ∪ {0})) = ((𝐴 “ (𝑆 ∖ {0})) ∪ (𝐴 “ {0}))
38 un0 4349 . . . . . . . . 9 ((𝐴 “ {0}) ∪ ∅) = (𝐴 “ {0})
39 uncom 4112 . . . . . . . . 9 ((𝐴 “ {0}) ∪ ∅) = (∅ ∪ (𝐴 “ {0}))
4038, 39eqtr3i 2768 . . . . . . . 8 (𝐴 “ {0}) = (∅ ∪ (𝐴 “ {0}))
4133, 37, 403eqtr4g 2803 . . . . . . 7 (𝜑 → (𝐴 “ (𝑆 ∪ {0})) = (𝐴 “ {0}))
4218, 41eqtrd 2778 . . . . . 6 (𝜑 → dom 𝐴 = (𝐴 “ {0}))
43 eqimss 3999 . . . . . 6 (dom 𝐴 = (𝐴 “ {0}) → dom 𝐴 ⊆ (𝐴 “ {0}))
4442, 43syl 17 . . . . 5 (𝜑 → dom 𝐴 ⊆ (𝐴 “ {0}))
4512ffund 6670 . . . . . 6 (𝜑 → Fun 𝐴)
46 ssid 3965 . . . . . 6 dom 𝐴 ⊆ dom 𝐴
47 funimass3 7002 . . . . . 6 ((Fun 𝐴 ∧ dom 𝐴 ⊆ dom 𝐴) → ((𝐴 “ dom 𝐴) ⊆ {0} ↔ dom 𝐴 ⊆ (𝐴 “ {0})))
4845, 46, 47sylancl 587 . . . . 5 (𝜑 → ((𝐴 “ dom 𝐴) ⊆ {0} ↔ dom 𝐴 ⊆ (𝐴 “ {0})))
4944, 48mpbird 257 . . . 4 (𝜑 → (𝐴 “ dom 𝐴) ⊆ {0})
5014, 49eqsstrrid 3992 . . 3 (𝜑 → ran 𝐴 ⊆ {0})
51 df-f 6498 . . 3 (𝐴:ℕ0⟶{0} ↔ (𝐴 Fn ℕ0 ∧ ran 𝐴 ⊆ {0}))
5213, 50, 51sylanbrc 584 . 2 (𝜑𝐴:ℕ0⟶{0})
53 c0ex 11108 . . 3 0 ∈ V
5453fconst2 7151 . 2 (𝐴:ℕ0⟶{0} ↔ 𝐴 = (ℕ0 × {0}))
5552, 54sylib 217 1 (𝜑𝐴 = (ℕ0 × {0}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2942  Vcvv 3444  cdif 3906  cun 3907  wss 3909  c0 4281  {csn 4585  cmpt 5187   × cxp 5630  ccnv 5631  dom cdm 5632  ran crn 5633  cima 5635  Fun wfun 6488   Fn wfn 6489  wf 6490  cfv 6494  (class class class)co 7352  m cmap 8724  supcsup 9335  cc 11008  cr 11009  0cc0 11010  1c1 11011   + caddc 11013   · cmul 11015   < clt 11148  0cn0 12372  cuz 12722  ...cfz 13379  cexp 13922  Σcsu 15530  0𝑝c0p 24985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7665  ax-inf2 9536  ax-cnex 11066  ax-resscn 11067  ax-1cn 11068  ax-icn 11069  ax-addcl 11070  ax-addrcl 11071  ax-mulcl 11072  ax-mulrcl 11073  ax-mulcom 11074  ax-addass 11075  ax-mulass 11076  ax-distr 11077  ax-i2m1 11078  ax-1ne0 11079  ax-1rid 11080  ax-rnegex 11081  ax-rrecex 11082  ax-cnre 11083  ax-pre-lttri 11084  ax-pre-lttrn 11085  ax-pre-ltadd 11086  ax-pre-mulgt0 11087  ax-pre-sup 11088
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-int 4907  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5530  df-eprel 5536  df-po 5544  df-so 5545  df-fr 5587  df-se 5588  df-we 5589  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-pred 6252  df-ord 6319  df-on 6320  df-lim 6321  df-suc 6322  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-isom 6503  df-riota 7308  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7796  df-1st 7914  df-2nd 7915  df-frecs 8205  df-wrecs 8236  df-recs 8310  df-rdg 8349  df-1o 8405  df-er 8607  df-map 8726  df-pm 8727  df-en 8843  df-dom 8844  df-sdom 8845  df-fin 8846  df-sup 9337  df-inf 9338  df-oi 9405  df-card 9834  df-pnf 11150  df-mnf 11151  df-xr 11152  df-ltxr 11153  df-le 11154  df-sub 11346  df-neg 11347  df-div 11772  df-nn 12113  df-2 12175  df-3 12176  df-n0 12373  df-z 12459  df-uz 12723  df-rp 12871  df-fz 13380  df-fzo 13523  df-fl 13652  df-seq 13862  df-exp 13923  df-hash 14185  df-cj 14944  df-re 14945  df-im 14946  df-sqrt 15080  df-abs 15081  df-clim 15330  df-rlim 15331  df-sum 15531  df-0p 24986
This theorem is referenced by:  coeeulem  25537
  Copyright terms: Public domain W3C validator