Proof of Theorem plyeq0
| Step | Hyp | Ref
| Expression |
| 1 | | plyeq0.3 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) |
| 2 | | plyeq0.1 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 3 | | 0cnd 11233 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈
ℂ) |
| 4 | 3 | snssd 4790 |
. . . . . . . 8
⊢ (𝜑 → {0} ⊆
ℂ) |
| 5 | 2, 4 | unssd 4172 |
. . . . . . 7
⊢ (𝜑 → (𝑆 ∪ {0}) ⊆
ℂ) |
| 6 | | cnex 11215 |
. . . . . . 7
⊢ ℂ
∈ V |
| 7 | | ssexg 5298 |
. . . . . . 7
⊢ (((𝑆 ∪ {0}) ⊆ ℂ
∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V) |
| 8 | 5, 6, 7 | sylancl 586 |
. . . . . 6
⊢ (𝜑 → (𝑆 ∪ {0}) ∈ V) |
| 9 | | nn0ex 12512 |
. . . . . 6
⊢
ℕ0 ∈ V |
| 10 | | elmapg 8858 |
. . . . . 6
⊢ (((𝑆 ∪ {0}) ∈ V ∧
ℕ0 ∈ V) → (𝐴 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0}))) |
| 11 | 8, 9, 10 | sylancl 586 |
. . . . 5
⊢ (𝜑 → (𝐴 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0}))) |
| 12 | 1, 11 | mpbid 232 |
. . . 4
⊢ (𝜑 → 𝐴:ℕ0⟶(𝑆 ∪ {0})) |
| 13 | 12 | ffnd 6712 |
. . 3
⊢ (𝜑 → 𝐴 Fn ℕ0) |
| 14 | | imadmrn 6062 |
. . . 4
⊢ (𝐴 “ dom 𝐴) = ran 𝐴 |
| 15 | | fdm 6720 |
. . . . . . . . 9
⊢ (𝐴:ℕ0⟶(𝑆 ∪ {0}) → dom 𝐴 =
ℕ0) |
| 16 | | fimacnv 6733 |
. . . . . . . . 9
⊢ (𝐴:ℕ0⟶(𝑆 ∪ {0}) → (◡𝐴 “ (𝑆 ∪ {0})) =
ℕ0) |
| 17 | 15, 16 | eqtr4d 2774 |
. . . . . . . 8
⊢ (𝐴:ℕ0⟶(𝑆 ∪ {0}) → dom 𝐴 = (◡𝐴 “ (𝑆 ∪ {0}))) |
| 18 | 12, 17 | syl 17 |
. . . . . . 7
⊢ (𝜑 → dom 𝐴 = (◡𝐴 “ (𝑆 ∪ {0}))) |
| 19 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (◡𝐴 “ (𝑆 ∖ {0})) = ∅) → (◡𝐴 “ (𝑆 ∖ {0})) = ∅) |
| 20 | 2 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (◡𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → 𝑆 ⊆
ℂ) |
| 21 | | plyeq0.2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 22 | 21 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (◡𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → 𝑁 ∈
ℕ0) |
| 23 | 1 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (◡𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) |
| 24 | | plyeq0.4 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝑁 + 1))) = {0}) |
| 25 | 24 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (◡𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → (𝐴 “
(ℤ≥‘(𝑁 + 1))) = {0}) |
| 26 | | plyeq0.5 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0𝑝 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
| 27 | 26 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (◡𝐴 “ (𝑆 ∖ {0})) ≠ ∅) →
0𝑝 = (𝑧
∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
| 28 | | eqid 2736 |
. . . . . . . . . . . 12
⊢
sup((◡𝐴 “ (𝑆 ∖ {0})), ℝ, < ) = sup((◡𝐴 “ (𝑆 ∖ {0})), ℝ, <
) |
| 29 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (◡𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → (◡𝐴 “ (𝑆 ∖ {0})) ≠
∅) |
| 30 | 20, 22, 23, 25, 27, 28, 29 | plyeq0lem 26172 |
. . . . . . . . . . 11
⊢ ¬
(𝜑 ∧ (◡𝐴 “ (𝑆 ∖ {0})) ≠
∅) |
| 31 | 30 | pm2.21i 119 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (◡𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → (◡𝐴 “ (𝑆 ∖ {0})) = ∅) |
| 32 | 19, 31 | pm2.61dane 3020 |
. . . . . . . . 9
⊢ (𝜑 → (◡𝐴 “ (𝑆 ∖ {0})) = ∅) |
| 33 | 32 | uneq1d 4147 |
. . . . . . . 8
⊢ (𝜑 → ((◡𝐴 “ (𝑆 ∖ {0})) ∪ (◡𝐴 “ {0})) = (∅ ∪ (◡𝐴 “ {0}))) |
| 34 | | undif1 4456 |
. . . . . . . . . 10
⊢ ((𝑆 ∖ {0}) ∪ {0}) =
(𝑆 ∪
{0}) |
| 35 | 34 | imaeq2i 6050 |
. . . . . . . . 9
⊢ (◡𝐴 “ ((𝑆 ∖ {0}) ∪ {0})) = (◡𝐴 “ (𝑆 ∪ {0})) |
| 36 | | imaundi 6143 |
. . . . . . . . 9
⊢ (◡𝐴 “ ((𝑆 ∖ {0}) ∪ {0})) = ((◡𝐴 “ (𝑆 ∖ {0})) ∪ (◡𝐴 “ {0})) |
| 37 | 35, 36 | eqtr3i 2761 |
. . . . . . . 8
⊢ (◡𝐴 “ (𝑆 ∪ {0})) = ((◡𝐴 “ (𝑆 ∖ {0})) ∪ (◡𝐴 “ {0})) |
| 38 | | un0 4374 |
. . . . . . . . 9
⊢ ((◡𝐴 “ {0}) ∪ ∅) = (◡𝐴 “ {0}) |
| 39 | | uncom 4138 |
. . . . . . . . 9
⊢ ((◡𝐴 “ {0}) ∪ ∅) = (∅
∪ (◡𝐴 “ {0})) |
| 40 | 38, 39 | eqtr3i 2761 |
. . . . . . . 8
⊢ (◡𝐴 “ {0}) = (∅ ∪ (◡𝐴 “ {0})) |
| 41 | 33, 37, 40 | 3eqtr4g 2796 |
. . . . . . 7
⊢ (𝜑 → (◡𝐴 “ (𝑆 ∪ {0})) = (◡𝐴 “ {0})) |
| 42 | 18, 41 | eqtrd 2771 |
. . . . . 6
⊢ (𝜑 → dom 𝐴 = (◡𝐴 “ {0})) |
| 43 | | eqimss 4022 |
. . . . . 6
⊢ (dom
𝐴 = (◡𝐴 “ {0}) → dom 𝐴 ⊆ (◡𝐴 “ {0})) |
| 44 | 42, 43 | syl 17 |
. . . . 5
⊢ (𝜑 → dom 𝐴 ⊆ (◡𝐴 “ {0})) |
| 45 | 12 | ffund 6715 |
. . . . . 6
⊢ (𝜑 → Fun 𝐴) |
| 46 | | ssid 3986 |
. . . . . 6
⊢ dom 𝐴 ⊆ dom 𝐴 |
| 47 | | funimass3 7049 |
. . . . . 6
⊢ ((Fun
𝐴 ∧ dom 𝐴 ⊆ dom 𝐴) → ((𝐴 “ dom 𝐴) ⊆ {0} ↔ dom 𝐴 ⊆ (◡𝐴 “ {0}))) |
| 48 | 45, 46, 47 | sylancl 586 |
. . . . 5
⊢ (𝜑 → ((𝐴 “ dom 𝐴) ⊆ {0} ↔ dom 𝐴 ⊆ (◡𝐴 “ {0}))) |
| 49 | 44, 48 | mpbird 257 |
. . . 4
⊢ (𝜑 → (𝐴 “ dom 𝐴) ⊆ {0}) |
| 50 | 14, 49 | eqsstrrid 4003 |
. . 3
⊢ (𝜑 → ran 𝐴 ⊆ {0}) |
| 51 | | df-f 6540 |
. . 3
⊢ (𝐴:ℕ0⟶{0}
↔ (𝐴 Fn
ℕ0 ∧ ran 𝐴 ⊆ {0})) |
| 52 | 13, 50, 51 | sylanbrc 583 |
. 2
⊢ (𝜑 → 𝐴:ℕ0⟶{0}) |
| 53 | | c0ex 11234 |
. . 3
⊢ 0 ∈
V |
| 54 | 53 | fconst2 7202 |
. 2
⊢ (𝐴:ℕ0⟶{0}
↔ 𝐴 =
(ℕ0 × {0})) |
| 55 | 52, 54 | sylib 218 |
1
⊢ (𝜑 → 𝐴 = (ℕ0 ×
{0})) |