MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyeq0 Structured version   Visualization version   GIF version

Theorem plyeq0 26173
Description: If a polynomial is zero at every point (or even just zero at the positive integers), then all the coefficients must be zero. This is the basis for the method of equating coefficients of equal polynomials, and ensures that df-coe 26152 is well-defined. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
plyeq0.1 (𝜑𝑆 ⊆ ℂ)
plyeq0.2 (𝜑𝑁 ∈ ℕ0)
plyeq0.3 (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑m0))
plyeq0.4 (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
plyeq0.5 (𝜑 → 0𝑝 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
Assertion
Ref Expression
plyeq0 (𝜑𝐴 = (ℕ0 × {0}))
Distinct variable groups:   𝑧,𝑘,𝐴   𝑘,𝑁,𝑧   𝜑,𝑘,𝑧   𝑆,𝑘,𝑧

Proof of Theorem plyeq0
StepHypRef Expression
1 plyeq0.3 . . . . 5 (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑m0))
2 plyeq0.1 . . . . . . . 8 (𝜑𝑆 ⊆ ℂ)
3 0cnd 11233 . . . . . . . . 9 (𝜑 → 0 ∈ ℂ)
43snssd 4790 . . . . . . . 8 (𝜑 → {0} ⊆ ℂ)
52, 4unssd 4172 . . . . . . 7 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
6 cnex 11215 . . . . . . 7 ℂ ∈ V
7 ssexg 5298 . . . . . . 7 (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V)
85, 6, 7sylancl 586 . . . . . 6 (𝜑 → (𝑆 ∪ {0}) ∈ V)
9 nn0ex 12512 . . . . . 6 0 ∈ V
10 elmapg 8858 . . . . . 6 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐴 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
118, 9, 10sylancl 586 . . . . 5 (𝜑 → (𝐴 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
121, 11mpbid 232 . . . 4 (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))
1312ffnd 6712 . . 3 (𝜑𝐴 Fn ℕ0)
14 imadmrn 6062 . . . 4 (𝐴 “ dom 𝐴) = ran 𝐴
15 fdm 6720 . . . . . . . . 9 (𝐴:ℕ0⟶(𝑆 ∪ {0}) → dom 𝐴 = ℕ0)
16 fimacnv 6733 . . . . . . . . 9 (𝐴:ℕ0⟶(𝑆 ∪ {0}) → (𝐴 “ (𝑆 ∪ {0})) = ℕ0)
1715, 16eqtr4d 2774 . . . . . . . 8 (𝐴:ℕ0⟶(𝑆 ∪ {0}) → dom 𝐴 = (𝐴 “ (𝑆 ∪ {0})))
1812, 17syl 17 . . . . . . 7 (𝜑 → dom 𝐴 = (𝐴 “ (𝑆 ∪ {0})))
19 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) = ∅) → (𝐴 “ (𝑆 ∖ {0})) = ∅)
202adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → 𝑆 ⊆ ℂ)
21 plyeq0.2 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ0)
2221adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → 𝑁 ∈ ℕ0)
231adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m0))
24 plyeq0.4 . . . . . . . . . . . . 13 (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
2524adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
26 plyeq0.5 . . . . . . . . . . . . 13 (𝜑 → 0𝑝 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
2726adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → 0𝑝 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
28 eqid 2736 . . . . . . . . . . . 12 sup((𝐴 “ (𝑆 ∖ {0})), ℝ, < ) = sup((𝐴 “ (𝑆 ∖ {0})), ℝ, < )
29 simpr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → (𝐴 “ (𝑆 ∖ {0})) ≠ ∅)
3020, 22, 23, 25, 27, 28, 29plyeq0lem 26172 . . . . . . . . . . 11 ¬ (𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅)
3130pm2.21i 119 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅) → (𝐴 “ (𝑆 ∖ {0})) = ∅)
3219, 31pm2.61dane 3020 . . . . . . . . 9 (𝜑 → (𝐴 “ (𝑆 ∖ {0})) = ∅)
3332uneq1d 4147 . . . . . . . 8 (𝜑 → ((𝐴 “ (𝑆 ∖ {0})) ∪ (𝐴 “ {0})) = (∅ ∪ (𝐴 “ {0})))
34 undif1 4456 . . . . . . . . . 10 ((𝑆 ∖ {0}) ∪ {0}) = (𝑆 ∪ {0})
3534imaeq2i 6050 . . . . . . . . 9 (𝐴 “ ((𝑆 ∖ {0}) ∪ {0})) = (𝐴 “ (𝑆 ∪ {0}))
36 imaundi 6143 . . . . . . . . 9 (𝐴 “ ((𝑆 ∖ {0}) ∪ {0})) = ((𝐴 “ (𝑆 ∖ {0})) ∪ (𝐴 “ {0}))
3735, 36eqtr3i 2761 . . . . . . . 8 (𝐴 “ (𝑆 ∪ {0})) = ((𝐴 “ (𝑆 ∖ {0})) ∪ (𝐴 “ {0}))
38 un0 4374 . . . . . . . . 9 ((𝐴 “ {0}) ∪ ∅) = (𝐴 “ {0})
39 uncom 4138 . . . . . . . . 9 ((𝐴 “ {0}) ∪ ∅) = (∅ ∪ (𝐴 “ {0}))
4038, 39eqtr3i 2761 . . . . . . . 8 (𝐴 “ {0}) = (∅ ∪ (𝐴 “ {0}))
4133, 37, 403eqtr4g 2796 . . . . . . 7 (𝜑 → (𝐴 “ (𝑆 ∪ {0})) = (𝐴 “ {0}))
4218, 41eqtrd 2771 . . . . . 6 (𝜑 → dom 𝐴 = (𝐴 “ {0}))
43 eqimss 4022 . . . . . 6 (dom 𝐴 = (𝐴 “ {0}) → dom 𝐴 ⊆ (𝐴 “ {0}))
4442, 43syl 17 . . . . 5 (𝜑 → dom 𝐴 ⊆ (𝐴 “ {0}))
4512ffund 6715 . . . . . 6 (𝜑 → Fun 𝐴)
46 ssid 3986 . . . . . 6 dom 𝐴 ⊆ dom 𝐴
47 funimass3 7049 . . . . . 6 ((Fun 𝐴 ∧ dom 𝐴 ⊆ dom 𝐴) → ((𝐴 “ dom 𝐴) ⊆ {0} ↔ dom 𝐴 ⊆ (𝐴 “ {0})))
4845, 46, 47sylancl 586 . . . . 5 (𝜑 → ((𝐴 “ dom 𝐴) ⊆ {0} ↔ dom 𝐴 ⊆ (𝐴 “ {0})))
4944, 48mpbird 257 . . . 4 (𝜑 → (𝐴 “ dom 𝐴) ⊆ {0})
5014, 49eqsstrrid 4003 . . 3 (𝜑 → ran 𝐴 ⊆ {0})
51 df-f 6540 . . 3 (𝐴:ℕ0⟶{0} ↔ (𝐴 Fn ℕ0 ∧ ran 𝐴 ⊆ {0}))
5213, 50, 51sylanbrc 583 . 2 (𝜑𝐴:ℕ0⟶{0})
53 c0ex 11234 . . 3 0 ∈ V
5453fconst2 7202 . 2 (𝐴:ℕ0⟶{0} ↔ 𝐴 = (ℕ0 × {0}))
5552, 54sylib 218 1 (𝜑𝐴 = (ℕ0 × {0}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  Vcvv 3464  cdif 3928  cun 3929  wss 3931  c0 4313  {csn 4606  cmpt 5206   × cxp 5657  ccnv 5658  dom cdm 5659  ran crn 5660  cima 5662  Fun wfun 6530   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  m cmap 8845  supcsup 9457  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139   < clt 11274  0cn0 12506  cuz 12857  ...cfz 13529  cexp 14084  Σcsu 15707  0𝑝c0p 25627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510  df-sum 15708  df-0p 25628
This theorem is referenced by:  coeeulem  26186
  Copyright terms: Public domain W3C validator