Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl1 Structured version   Visualization version   GIF version

Theorem lfl1 39088
Description: A nonzero functional has a value of 1 at some argument. (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lfl1.d 𝐷 = (Scalar‘𝑊)
lfl1.o 0 = (0g𝐷)
lfl1.u 1 = (1r𝐷)
lfl1.v 𝑉 = (Base‘𝑊)
lfl1.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lfl1 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ∃𝑥𝑉 (𝐺𝑥) = 1 )
Distinct variable groups:   𝑥,𝐷   𝑥,𝐺   𝑥, 1   𝑥,𝑉   𝑥,𝑊
Allowed substitution hints:   𝐹(𝑥)   0 (𝑥)

Proof of Theorem lfl1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nne 2936 . . . . . . 7 (¬ (𝐺𝑧) ≠ 0 ↔ (𝐺𝑧) = 0 )
21ralbii 3082 . . . . . 6 (∀𝑧𝑉 ¬ (𝐺𝑧) ≠ 0 ↔ ∀𝑧𝑉 (𝐺𝑧) = 0 )
3 lfl1.d . . . . . . . . . 10 𝐷 = (Scalar‘𝑊)
4 eqid 2735 . . . . . . . . . 10 (Base‘𝐷) = (Base‘𝐷)
5 lfl1.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
6 lfl1.f . . . . . . . . . 10 𝐹 = (LFnl‘𝑊)
73, 4, 5, 6lflf 39081 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → 𝐺:𝑉⟶(Base‘𝐷))
87ffnd 6707 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → 𝐺 Fn 𝑉)
9 fconstfv 7204 . . . . . . . . 9 (𝐺:𝑉⟶{ 0 } ↔ (𝐺 Fn 𝑉 ∧ ∀𝑧𝑉 (𝐺𝑧) = 0 ))
109simplbi2 500 . . . . . . . 8 (𝐺 Fn 𝑉 → (∀𝑧𝑉 (𝐺𝑧) = 0𝐺:𝑉⟶{ 0 }))
118, 10syl 17 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (∀𝑧𝑉 (𝐺𝑧) = 0𝐺:𝑉⟶{ 0 }))
12 lfl1.o . . . . . . . . 9 0 = (0g𝐷)
1312fvexi 6890 . . . . . . . 8 0 ∈ V
1413fconst2 7197 . . . . . . 7 (𝐺:𝑉⟶{ 0 } ↔ 𝐺 = (𝑉 × { 0 }))
1511, 14imbitrdi 251 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (∀𝑧𝑉 (𝐺𝑧) = 0𝐺 = (𝑉 × { 0 })))
162, 15biimtrid 242 . . . . 5 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (∀𝑧𝑉 ¬ (𝐺𝑧) ≠ 0𝐺 = (𝑉 × { 0 })))
1716necon3ad 2945 . . . 4 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (𝐺 ≠ (𝑉 × { 0 }) → ¬ ∀𝑧𝑉 ¬ (𝐺𝑧) ≠ 0 ))
18 dfrex2 3063 . . . 4 (∃𝑧𝑉 (𝐺𝑧) ≠ 0 ↔ ¬ ∀𝑧𝑉 ¬ (𝐺𝑧) ≠ 0 )
1917, 18imbitrrdi 252 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (𝐺 ≠ (𝑉 × { 0 }) → ∃𝑧𝑉 (𝐺𝑧) ≠ 0 ))
20193impia 1117 . 2 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ∃𝑧𝑉 (𝐺𝑧) ≠ 0 )
21 simp1l 1198 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → 𝑊 ∈ LVec)
22 lveclmod 21064 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
2321, 22syl 17 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → 𝑊 ∈ LMod)
243lvecdrng 21063 . . . . . . . 8 (𝑊 ∈ LVec → 𝐷 ∈ DivRing)
2521, 24syl 17 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → 𝐷 ∈ DivRing)
26 simp1r 1199 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → 𝐺𝐹)
27 simp2 1137 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → 𝑧𝑉)
283, 4, 5, 6lflcl 39082 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑧𝑉) → (𝐺𝑧) ∈ (Base‘𝐷))
2921, 26, 27, 28syl3anc 1373 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → (𝐺𝑧) ∈ (Base‘𝐷))
30 simp3 1138 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → (𝐺𝑧) ≠ 0 )
31 eqid 2735 . . . . . . . 8 (invr𝐷) = (invr𝐷)
324, 12, 31drnginvrcl 20713 . . . . . . 7 ((𝐷 ∈ DivRing ∧ (𝐺𝑧) ∈ (Base‘𝐷) ∧ (𝐺𝑧) ≠ 0 ) → ((invr𝐷)‘(𝐺𝑧)) ∈ (Base‘𝐷))
3325, 29, 30, 32syl3anc 1373 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → ((invr𝐷)‘(𝐺𝑧)) ∈ (Base‘𝐷))
34 eqid 2735 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
355, 3, 34, 4lmodvscl 20835 . . . . . 6 ((𝑊 ∈ LMod ∧ ((invr𝐷)‘(𝐺𝑧)) ∈ (Base‘𝐷) ∧ 𝑧𝑉) → (((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧) ∈ 𝑉)
3623, 33, 27, 35syl3anc 1373 . . . . 5 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → (((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧) ∈ 𝑉)
37 eqid 2735 . . . . . . . 8 (.r𝐷) = (.r𝐷)
383, 4, 37, 5, 34, 6lflmul 39086 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (((invr𝐷)‘(𝐺𝑧)) ∈ (Base‘𝐷) ∧ 𝑧𝑉)) → (𝐺‘(((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧)) = (((invr𝐷)‘(𝐺𝑧))(.r𝐷)(𝐺𝑧)))
3923, 26, 33, 27, 38syl112anc 1376 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → (𝐺‘(((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧)) = (((invr𝐷)‘(𝐺𝑧))(.r𝐷)(𝐺𝑧)))
40 lfl1.u . . . . . . . 8 1 = (1r𝐷)
414, 12, 37, 40, 31drnginvrl 20716 . . . . . . 7 ((𝐷 ∈ DivRing ∧ (𝐺𝑧) ∈ (Base‘𝐷) ∧ (𝐺𝑧) ≠ 0 ) → (((invr𝐷)‘(𝐺𝑧))(.r𝐷)(𝐺𝑧)) = 1 )
4225, 29, 30, 41syl3anc 1373 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → (((invr𝐷)‘(𝐺𝑧))(.r𝐷)(𝐺𝑧)) = 1 )
4339, 42eqtrd 2770 . . . . 5 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → (𝐺‘(((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧)) = 1 )
44 fveqeq2 6885 . . . . . 6 (𝑥 = (((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧) → ((𝐺𝑥) = 1 ↔ (𝐺‘(((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧)) = 1 ))
4544rspcev 3601 . . . . 5 (((((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧) ∈ 𝑉 ∧ (𝐺‘(((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧)) = 1 ) → ∃𝑥𝑉 (𝐺𝑥) = 1 )
4636, 43, 45syl2anc 584 . . . 4 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → ∃𝑥𝑉 (𝐺𝑥) = 1 )
4746rexlimdv3a 3145 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (∃𝑧𝑉 (𝐺𝑧) ≠ 0 → ∃𝑥𝑉 (𝐺𝑥) = 1 ))
48473adant3 1132 . 2 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → (∃𝑧𝑉 (𝐺𝑧) ≠ 0 → ∃𝑥𝑉 (𝐺𝑥) = 1 ))
4920, 48mpd 15 1 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ∃𝑥𝑉 (𝐺𝑥) = 1 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  {csn 4601   × cxp 5652   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  Basecbs 17228  .rcmulr 17272  Scalarcsca 17274   ·𝑠 cvsca 17275  0gc0g 17453  1rcur 20141  invrcinvr 20347  DivRingcdr 20689  LModclmod 20817  LVecclvec 21060  LFnlclfn 39075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-sbg 18921  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-drng 20691  df-lmod 20819  df-lvec 21061  df-lfl 39076
This theorem is referenced by:  eqlkr  39117  lkrshp  39123
  Copyright terms: Public domain W3C validator