| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nne 2944 | . . . . . . 7
⊢ (¬
(𝐺‘𝑧) ≠ 0 ↔ (𝐺‘𝑧) = 0 ) | 
| 2 | 1 | ralbii 3093 | . . . . . 6
⊢
(∀𝑧 ∈
𝑉 ¬ (𝐺‘𝑧) ≠ 0 ↔ ∀𝑧 ∈ 𝑉 (𝐺‘𝑧) = 0 ) | 
| 3 |  | lfl1.d | . . . . . . . . . 10
⊢ 𝐷 = (Scalar‘𝑊) | 
| 4 |  | eqid 2737 | . . . . . . . . . 10
⊢
(Base‘𝐷) =
(Base‘𝐷) | 
| 5 |  | lfl1.v | . . . . . . . . . 10
⊢ 𝑉 = (Base‘𝑊) | 
| 6 |  | lfl1.f | . . . . . . . . . 10
⊢ 𝐹 = (LFnl‘𝑊) | 
| 7 | 3, 4, 5, 6 | lflf 39064 | . . . . . . . . 9
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶(Base‘𝐷)) | 
| 8 | 7 | ffnd 6737 | . . . . . . . 8
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → 𝐺 Fn 𝑉) | 
| 9 |  | fconstfv 7232 | . . . . . . . . 9
⊢ (𝐺:𝑉⟶{ 0 } ↔ (𝐺 Fn 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝐺‘𝑧) = 0 )) | 
| 10 | 9 | simplbi2 500 | . . . . . . . 8
⊢ (𝐺 Fn 𝑉 → (∀𝑧 ∈ 𝑉 (𝐺‘𝑧) = 0 → 𝐺:𝑉⟶{ 0 })) | 
| 11 | 8, 10 | syl 17 | . . . . . . 7
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → (∀𝑧 ∈ 𝑉 (𝐺‘𝑧) = 0 → 𝐺:𝑉⟶{ 0 })) | 
| 12 |  | lfl1.o | . . . . . . . . 9
⊢  0 =
(0g‘𝐷) | 
| 13 | 12 | fvexi 6920 | . . . . . . . 8
⊢  0 ∈
V | 
| 14 | 13 | fconst2 7225 | . . . . . . 7
⊢ (𝐺:𝑉⟶{ 0 } ↔ 𝐺 = (𝑉 × { 0 })) | 
| 15 | 11, 14 | imbitrdi 251 | . . . . . 6
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → (∀𝑧 ∈ 𝑉 (𝐺‘𝑧) = 0 → 𝐺 = (𝑉 × { 0 }))) | 
| 16 | 2, 15 | biimtrid 242 | . . . . 5
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → (∀𝑧 ∈ 𝑉 ¬ (𝐺‘𝑧) ≠ 0 → 𝐺 = (𝑉 × { 0 }))) | 
| 17 | 16 | necon3ad 2953 | . . . 4
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → (𝐺 ≠ (𝑉 × { 0 }) → ¬
∀𝑧 ∈ 𝑉 ¬ (𝐺‘𝑧) ≠ 0 )) | 
| 18 |  | dfrex2 3073 | . . . 4
⊢
(∃𝑧 ∈
𝑉 (𝐺‘𝑧) ≠ 0 ↔ ¬ ∀𝑧 ∈ 𝑉 ¬ (𝐺‘𝑧) ≠ 0 ) | 
| 19 | 17, 18 | imbitrrdi 252 | . . 3
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → (𝐺 ≠ (𝑉 × { 0 }) → ∃𝑧 ∈ 𝑉 (𝐺‘𝑧) ≠ 0 )) | 
| 20 | 19 | 3impia 1118 | . 2
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) → ∃𝑧 ∈ 𝑉 (𝐺‘𝑧) ≠ 0 ) | 
| 21 |  | simp1l 1198 | . . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) ≠ 0 ) → 𝑊 ∈ LVec) | 
| 22 |  | lveclmod 21105 | . . . . . . 7
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | 
| 23 | 21, 22 | syl 17 | . . . . . 6
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) ≠ 0 ) → 𝑊 ∈ LMod) | 
| 24 | 3 | lvecdrng 21104 | . . . . . . . 8
⊢ (𝑊 ∈ LVec → 𝐷 ∈
DivRing) | 
| 25 | 21, 24 | syl 17 | . . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) ≠ 0 ) → 𝐷 ∈ DivRing) | 
| 26 |  | simp1r 1199 | . . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) ≠ 0 ) → 𝐺 ∈ 𝐹) | 
| 27 |  | simp2 1138 | . . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) ≠ 0 ) → 𝑧 ∈ 𝑉) | 
| 28 | 3, 4, 5, 6 | lflcl 39065 | . . . . . . . 8
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑧 ∈ 𝑉) → (𝐺‘𝑧) ∈ (Base‘𝐷)) | 
| 29 | 21, 26, 27, 28 | syl3anc 1373 | . . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) ≠ 0 ) → (𝐺‘𝑧) ∈ (Base‘𝐷)) | 
| 30 |  | simp3 1139 | . . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) ≠ 0 ) → (𝐺‘𝑧) ≠ 0 ) | 
| 31 |  | eqid 2737 | . . . . . . . 8
⊢
(invr‘𝐷) = (invr‘𝐷) | 
| 32 | 4, 12, 31 | drnginvrcl 20753 | . . . . . . 7
⊢ ((𝐷 ∈ DivRing ∧ (𝐺‘𝑧) ∈ (Base‘𝐷) ∧ (𝐺‘𝑧) ≠ 0 ) →
((invr‘𝐷)‘(𝐺‘𝑧)) ∈ (Base‘𝐷)) | 
| 33 | 25, 29, 30, 32 | syl3anc 1373 | . . . . . 6
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) ≠ 0 ) →
((invr‘𝐷)‘(𝐺‘𝑧)) ∈ (Base‘𝐷)) | 
| 34 |  | eqid 2737 | . . . . . . 7
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) | 
| 35 | 5, 3, 34, 4 | lmodvscl 20876 | . . . . . 6
⊢ ((𝑊 ∈ LMod ∧
((invr‘𝐷)‘(𝐺‘𝑧)) ∈ (Base‘𝐷) ∧ 𝑧 ∈ 𝑉) → (((invr‘𝐷)‘(𝐺‘𝑧))( ·𝑠
‘𝑊)𝑧) ∈ 𝑉) | 
| 36 | 23, 33, 27, 35 | syl3anc 1373 | . . . . 5
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) ≠ 0 ) →
(((invr‘𝐷)‘(𝐺‘𝑧))( ·𝑠
‘𝑊)𝑧) ∈ 𝑉) | 
| 37 |  | eqid 2737 | . . . . . . . 8
⊢
(.r‘𝐷) = (.r‘𝐷) | 
| 38 | 3, 4, 37, 5, 34, 6 | lflmul 39069 | . . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (((invr‘𝐷)‘(𝐺‘𝑧)) ∈ (Base‘𝐷) ∧ 𝑧 ∈ 𝑉)) → (𝐺‘(((invr‘𝐷)‘(𝐺‘𝑧))( ·𝑠
‘𝑊)𝑧)) = (((invr‘𝐷)‘(𝐺‘𝑧))(.r‘𝐷)(𝐺‘𝑧))) | 
| 39 | 23, 26, 33, 27, 38 | syl112anc 1376 | . . . . . 6
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) ≠ 0 ) → (𝐺‘(((invr‘𝐷)‘(𝐺‘𝑧))( ·𝑠
‘𝑊)𝑧)) = (((invr‘𝐷)‘(𝐺‘𝑧))(.r‘𝐷)(𝐺‘𝑧))) | 
| 40 |  | lfl1.u | . . . . . . . 8
⊢  1 =
(1r‘𝐷) | 
| 41 | 4, 12, 37, 40, 31 | drnginvrl 20756 | . . . . . . 7
⊢ ((𝐷 ∈ DivRing ∧ (𝐺‘𝑧) ∈ (Base‘𝐷) ∧ (𝐺‘𝑧) ≠ 0 ) →
(((invr‘𝐷)‘(𝐺‘𝑧))(.r‘𝐷)(𝐺‘𝑧)) = 1 ) | 
| 42 | 25, 29, 30, 41 | syl3anc 1373 | . . . . . 6
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) ≠ 0 ) →
(((invr‘𝐷)‘(𝐺‘𝑧))(.r‘𝐷)(𝐺‘𝑧)) = 1 ) | 
| 43 | 39, 42 | eqtrd 2777 | . . . . 5
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) ≠ 0 ) → (𝐺‘(((invr‘𝐷)‘(𝐺‘𝑧))( ·𝑠
‘𝑊)𝑧)) = 1 ) | 
| 44 |  | fveqeq2 6915 | . . . . . 6
⊢ (𝑥 =
(((invr‘𝐷)‘(𝐺‘𝑧))( ·𝑠
‘𝑊)𝑧) → ((𝐺‘𝑥) = 1 ↔ (𝐺‘(((invr‘𝐷)‘(𝐺‘𝑧))( ·𝑠
‘𝑊)𝑧)) = 1 )) | 
| 45 | 44 | rspcev 3622 | . . . . 5
⊢
(((((invr‘𝐷)‘(𝐺‘𝑧))( ·𝑠
‘𝑊)𝑧) ∈ 𝑉 ∧ (𝐺‘(((invr‘𝐷)‘(𝐺‘𝑧))( ·𝑠
‘𝑊)𝑧)) = 1 ) → ∃𝑥 ∈ 𝑉 (𝐺‘𝑥) = 1 ) | 
| 46 | 36, 43, 45 | syl2anc 584 | . . . 4
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) ≠ 0 ) → ∃𝑥 ∈ 𝑉 (𝐺‘𝑥) = 1 ) | 
| 47 | 46 | rexlimdv3a 3159 | . . 3
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → (∃𝑧 ∈ 𝑉 (𝐺‘𝑧) ≠ 0 → ∃𝑥 ∈ 𝑉 (𝐺‘𝑥) = 1 )) | 
| 48 | 47 | 3adant3 1133 | . 2
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) → (∃𝑧 ∈ 𝑉 (𝐺‘𝑧) ≠ 0 → ∃𝑥 ∈ 𝑉 (𝐺‘𝑥) = 1 )) | 
| 49 | 20, 48 | mpd 15 | 1
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) → ∃𝑥 ∈ 𝑉 (𝐺‘𝑥) = 1 ) |