Step | Hyp | Ref
| Expression |
1 | | nne 2947 |
. . . . . . 7
⊢ (¬
(𝐺‘𝑧) ≠ 0 ↔ (𝐺‘𝑧) = 0 ) |
2 | 1 | ralbii 3092 |
. . . . . 6
⊢
(∀𝑧 ∈
𝑉 ¬ (𝐺‘𝑧) ≠ 0 ↔ ∀𝑧 ∈ 𝑉 (𝐺‘𝑧) = 0 ) |
3 | | lfl1.d |
. . . . . . . . . 10
⊢ 𝐷 = (Scalar‘𝑊) |
4 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝐷) =
(Base‘𝐷) |
5 | | lfl1.v |
. . . . . . . . . 10
⊢ 𝑉 = (Base‘𝑊) |
6 | | lfl1.f |
. . . . . . . . . 10
⊢ 𝐹 = (LFnl‘𝑊) |
7 | 3, 4, 5, 6 | lflf 37077 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶(Base‘𝐷)) |
8 | 7 | ffnd 6601 |
. . . . . . . 8
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → 𝐺 Fn 𝑉) |
9 | | fconstfv 7088 |
. . . . . . . . 9
⊢ (𝐺:𝑉⟶{ 0 } ↔ (𝐺 Fn 𝑉 ∧ ∀𝑧 ∈ 𝑉 (𝐺‘𝑧) = 0 )) |
10 | 9 | simplbi2 501 |
. . . . . . . 8
⊢ (𝐺 Fn 𝑉 → (∀𝑧 ∈ 𝑉 (𝐺‘𝑧) = 0 → 𝐺:𝑉⟶{ 0 })) |
11 | 8, 10 | syl 17 |
. . . . . . 7
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → (∀𝑧 ∈ 𝑉 (𝐺‘𝑧) = 0 → 𝐺:𝑉⟶{ 0 })) |
12 | | lfl1.o |
. . . . . . . . 9
⊢ 0 =
(0g‘𝐷) |
13 | 12 | fvexi 6788 |
. . . . . . . 8
⊢ 0 ∈
V |
14 | 13 | fconst2 7080 |
. . . . . . 7
⊢ (𝐺:𝑉⟶{ 0 } ↔ 𝐺 = (𝑉 × { 0 })) |
15 | 11, 14 | syl6ib 250 |
. . . . . 6
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → (∀𝑧 ∈ 𝑉 (𝐺‘𝑧) = 0 → 𝐺 = (𝑉 × { 0 }))) |
16 | 2, 15 | syl5bi 241 |
. . . . 5
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → (∀𝑧 ∈ 𝑉 ¬ (𝐺‘𝑧) ≠ 0 → 𝐺 = (𝑉 × { 0 }))) |
17 | 16 | necon3ad 2956 |
. . . 4
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → (𝐺 ≠ (𝑉 × { 0 }) → ¬
∀𝑧 ∈ 𝑉 ¬ (𝐺‘𝑧) ≠ 0 )) |
18 | | dfrex2 3170 |
. . . 4
⊢
(∃𝑧 ∈
𝑉 (𝐺‘𝑧) ≠ 0 ↔ ¬ ∀𝑧 ∈ 𝑉 ¬ (𝐺‘𝑧) ≠ 0 ) |
19 | 17, 18 | syl6ibr 251 |
. . 3
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → (𝐺 ≠ (𝑉 × { 0 }) → ∃𝑧 ∈ 𝑉 (𝐺‘𝑧) ≠ 0 )) |
20 | 19 | 3impia 1116 |
. 2
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) → ∃𝑧 ∈ 𝑉 (𝐺‘𝑧) ≠ 0 ) |
21 | | simp1l 1196 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) ≠ 0 ) → 𝑊 ∈ LVec) |
22 | | lveclmod 20368 |
. . . . . . 7
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
23 | 21, 22 | syl 17 |
. . . . . 6
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) ≠ 0 ) → 𝑊 ∈ LMod) |
24 | 3 | lvecdrng 20367 |
. . . . . . . 8
⊢ (𝑊 ∈ LVec → 𝐷 ∈
DivRing) |
25 | 21, 24 | syl 17 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) ≠ 0 ) → 𝐷 ∈ DivRing) |
26 | | simp1r 1197 |
. . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) ≠ 0 ) → 𝐺 ∈ 𝐹) |
27 | | simp2 1136 |
. . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) ≠ 0 ) → 𝑧 ∈ 𝑉) |
28 | 3, 4, 5, 6 | lflcl 37078 |
. . . . . . . 8
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑧 ∈ 𝑉) → (𝐺‘𝑧) ∈ (Base‘𝐷)) |
29 | 21, 26, 27, 28 | syl3anc 1370 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) ≠ 0 ) → (𝐺‘𝑧) ∈ (Base‘𝐷)) |
30 | | simp3 1137 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) ≠ 0 ) → (𝐺‘𝑧) ≠ 0 ) |
31 | | eqid 2738 |
. . . . . . . 8
⊢
(invr‘𝐷) = (invr‘𝐷) |
32 | 4, 12, 31 | drnginvrcl 20008 |
. . . . . . 7
⊢ ((𝐷 ∈ DivRing ∧ (𝐺‘𝑧) ∈ (Base‘𝐷) ∧ (𝐺‘𝑧) ≠ 0 ) →
((invr‘𝐷)‘(𝐺‘𝑧)) ∈ (Base‘𝐷)) |
33 | 25, 29, 30, 32 | syl3anc 1370 |
. . . . . 6
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) ≠ 0 ) →
((invr‘𝐷)‘(𝐺‘𝑧)) ∈ (Base‘𝐷)) |
34 | | eqid 2738 |
. . . . . . 7
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
35 | 5, 3, 34, 4 | lmodvscl 20140 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧
((invr‘𝐷)‘(𝐺‘𝑧)) ∈ (Base‘𝐷) ∧ 𝑧 ∈ 𝑉) → (((invr‘𝐷)‘(𝐺‘𝑧))( ·𝑠
‘𝑊)𝑧) ∈ 𝑉) |
36 | 23, 33, 27, 35 | syl3anc 1370 |
. . . . 5
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) ≠ 0 ) →
(((invr‘𝐷)‘(𝐺‘𝑧))( ·𝑠
‘𝑊)𝑧) ∈ 𝑉) |
37 | | eqid 2738 |
. . . . . . . 8
⊢
(.r‘𝐷) = (.r‘𝐷) |
38 | 3, 4, 37, 5, 34, 6 | lflmul 37082 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (((invr‘𝐷)‘(𝐺‘𝑧)) ∈ (Base‘𝐷) ∧ 𝑧 ∈ 𝑉)) → (𝐺‘(((invr‘𝐷)‘(𝐺‘𝑧))( ·𝑠
‘𝑊)𝑧)) = (((invr‘𝐷)‘(𝐺‘𝑧))(.r‘𝐷)(𝐺‘𝑧))) |
39 | 23, 26, 33, 27, 38 | syl112anc 1373 |
. . . . . 6
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) ≠ 0 ) → (𝐺‘(((invr‘𝐷)‘(𝐺‘𝑧))( ·𝑠
‘𝑊)𝑧)) = (((invr‘𝐷)‘(𝐺‘𝑧))(.r‘𝐷)(𝐺‘𝑧))) |
40 | | lfl1.u |
. . . . . . . 8
⊢ 1 =
(1r‘𝐷) |
41 | 4, 12, 37, 40, 31 | drnginvrl 20010 |
. . . . . . 7
⊢ ((𝐷 ∈ DivRing ∧ (𝐺‘𝑧) ∈ (Base‘𝐷) ∧ (𝐺‘𝑧) ≠ 0 ) →
(((invr‘𝐷)‘(𝐺‘𝑧))(.r‘𝐷)(𝐺‘𝑧)) = 1 ) |
42 | 25, 29, 30, 41 | syl3anc 1370 |
. . . . . 6
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) ≠ 0 ) →
(((invr‘𝐷)‘(𝐺‘𝑧))(.r‘𝐷)(𝐺‘𝑧)) = 1 ) |
43 | 39, 42 | eqtrd 2778 |
. . . . 5
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) ≠ 0 ) → (𝐺‘(((invr‘𝐷)‘(𝐺‘𝑧))( ·𝑠
‘𝑊)𝑧)) = 1 ) |
44 | | fveqeq2 6783 |
. . . . . 6
⊢ (𝑥 =
(((invr‘𝐷)‘(𝐺‘𝑧))( ·𝑠
‘𝑊)𝑧) → ((𝐺‘𝑥) = 1 ↔ (𝐺‘(((invr‘𝐷)‘(𝐺‘𝑧))( ·𝑠
‘𝑊)𝑧)) = 1 )) |
45 | 44 | rspcev 3561 |
. . . . 5
⊢
(((((invr‘𝐷)‘(𝐺‘𝑧))( ·𝑠
‘𝑊)𝑧) ∈ 𝑉 ∧ (𝐺‘(((invr‘𝐷)‘(𝐺‘𝑧))( ·𝑠
‘𝑊)𝑧)) = 1 ) → ∃𝑥 ∈ 𝑉 (𝐺‘𝑥) = 1 ) |
46 | 36, 43, 45 | syl2anc 584 |
. . . 4
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) ∧ 𝑧 ∈ 𝑉 ∧ (𝐺‘𝑧) ≠ 0 ) → ∃𝑥 ∈ 𝑉 (𝐺‘𝑥) = 1 ) |
47 | 46 | rexlimdv3a 3215 |
. . 3
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → (∃𝑧 ∈ 𝑉 (𝐺‘𝑧) ≠ 0 → ∃𝑥 ∈ 𝑉 (𝐺‘𝑥) = 1 )) |
48 | 47 | 3adant3 1131 |
. 2
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) → (∃𝑧 ∈ 𝑉 (𝐺‘𝑧) ≠ 0 → ∃𝑥 ∈ 𝑉 (𝐺‘𝑥) = 1 )) |
49 | 20, 48 | mpd 15 |
1
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) → ∃𝑥 ∈ 𝑉 (𝐺‘𝑥) = 1 ) |