Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl1 Structured version   Visualization version   GIF version

Theorem lfl1 37084
Description: A nonzero functional has a value of 1 at some argument. (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lfl1.d 𝐷 = (Scalar‘𝑊)
lfl1.o 0 = (0g𝐷)
lfl1.u 1 = (1r𝐷)
lfl1.v 𝑉 = (Base‘𝑊)
lfl1.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lfl1 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ∃𝑥𝑉 (𝐺𝑥) = 1 )
Distinct variable groups:   𝑥,𝐷   𝑥,𝐺   𝑥, 1   𝑥,𝑉   𝑥,𝑊
Allowed substitution hints:   𝐹(𝑥)   0 (𝑥)

Proof of Theorem lfl1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nne 2947 . . . . . . 7 (¬ (𝐺𝑧) ≠ 0 ↔ (𝐺𝑧) = 0 )
21ralbii 3092 . . . . . 6 (∀𝑧𝑉 ¬ (𝐺𝑧) ≠ 0 ↔ ∀𝑧𝑉 (𝐺𝑧) = 0 )
3 lfl1.d . . . . . . . . . 10 𝐷 = (Scalar‘𝑊)
4 eqid 2738 . . . . . . . . . 10 (Base‘𝐷) = (Base‘𝐷)
5 lfl1.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
6 lfl1.f . . . . . . . . . 10 𝐹 = (LFnl‘𝑊)
73, 4, 5, 6lflf 37077 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → 𝐺:𝑉⟶(Base‘𝐷))
87ffnd 6601 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → 𝐺 Fn 𝑉)
9 fconstfv 7088 . . . . . . . . 9 (𝐺:𝑉⟶{ 0 } ↔ (𝐺 Fn 𝑉 ∧ ∀𝑧𝑉 (𝐺𝑧) = 0 ))
109simplbi2 501 . . . . . . . 8 (𝐺 Fn 𝑉 → (∀𝑧𝑉 (𝐺𝑧) = 0𝐺:𝑉⟶{ 0 }))
118, 10syl 17 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (∀𝑧𝑉 (𝐺𝑧) = 0𝐺:𝑉⟶{ 0 }))
12 lfl1.o . . . . . . . . 9 0 = (0g𝐷)
1312fvexi 6788 . . . . . . . 8 0 ∈ V
1413fconst2 7080 . . . . . . 7 (𝐺:𝑉⟶{ 0 } ↔ 𝐺 = (𝑉 × { 0 }))
1511, 14syl6ib 250 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (∀𝑧𝑉 (𝐺𝑧) = 0𝐺 = (𝑉 × { 0 })))
162, 15syl5bi 241 . . . . 5 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (∀𝑧𝑉 ¬ (𝐺𝑧) ≠ 0𝐺 = (𝑉 × { 0 })))
1716necon3ad 2956 . . . 4 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (𝐺 ≠ (𝑉 × { 0 }) → ¬ ∀𝑧𝑉 ¬ (𝐺𝑧) ≠ 0 ))
18 dfrex2 3170 . . . 4 (∃𝑧𝑉 (𝐺𝑧) ≠ 0 ↔ ¬ ∀𝑧𝑉 ¬ (𝐺𝑧) ≠ 0 )
1917, 18syl6ibr 251 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (𝐺 ≠ (𝑉 × { 0 }) → ∃𝑧𝑉 (𝐺𝑧) ≠ 0 ))
20193impia 1116 . 2 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ∃𝑧𝑉 (𝐺𝑧) ≠ 0 )
21 simp1l 1196 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → 𝑊 ∈ LVec)
22 lveclmod 20368 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
2321, 22syl 17 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → 𝑊 ∈ LMod)
243lvecdrng 20367 . . . . . . . 8 (𝑊 ∈ LVec → 𝐷 ∈ DivRing)
2521, 24syl 17 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → 𝐷 ∈ DivRing)
26 simp1r 1197 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → 𝐺𝐹)
27 simp2 1136 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → 𝑧𝑉)
283, 4, 5, 6lflcl 37078 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑧𝑉) → (𝐺𝑧) ∈ (Base‘𝐷))
2921, 26, 27, 28syl3anc 1370 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → (𝐺𝑧) ∈ (Base‘𝐷))
30 simp3 1137 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → (𝐺𝑧) ≠ 0 )
31 eqid 2738 . . . . . . . 8 (invr𝐷) = (invr𝐷)
324, 12, 31drnginvrcl 20008 . . . . . . 7 ((𝐷 ∈ DivRing ∧ (𝐺𝑧) ∈ (Base‘𝐷) ∧ (𝐺𝑧) ≠ 0 ) → ((invr𝐷)‘(𝐺𝑧)) ∈ (Base‘𝐷))
3325, 29, 30, 32syl3anc 1370 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → ((invr𝐷)‘(𝐺𝑧)) ∈ (Base‘𝐷))
34 eqid 2738 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
355, 3, 34, 4lmodvscl 20140 . . . . . 6 ((𝑊 ∈ LMod ∧ ((invr𝐷)‘(𝐺𝑧)) ∈ (Base‘𝐷) ∧ 𝑧𝑉) → (((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧) ∈ 𝑉)
3623, 33, 27, 35syl3anc 1370 . . . . 5 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → (((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧) ∈ 𝑉)
37 eqid 2738 . . . . . . . 8 (.r𝐷) = (.r𝐷)
383, 4, 37, 5, 34, 6lflmul 37082 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (((invr𝐷)‘(𝐺𝑧)) ∈ (Base‘𝐷) ∧ 𝑧𝑉)) → (𝐺‘(((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧)) = (((invr𝐷)‘(𝐺𝑧))(.r𝐷)(𝐺𝑧)))
3923, 26, 33, 27, 38syl112anc 1373 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → (𝐺‘(((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧)) = (((invr𝐷)‘(𝐺𝑧))(.r𝐷)(𝐺𝑧)))
40 lfl1.u . . . . . . . 8 1 = (1r𝐷)
414, 12, 37, 40, 31drnginvrl 20010 . . . . . . 7 ((𝐷 ∈ DivRing ∧ (𝐺𝑧) ∈ (Base‘𝐷) ∧ (𝐺𝑧) ≠ 0 ) → (((invr𝐷)‘(𝐺𝑧))(.r𝐷)(𝐺𝑧)) = 1 )
4225, 29, 30, 41syl3anc 1370 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → (((invr𝐷)‘(𝐺𝑧))(.r𝐷)(𝐺𝑧)) = 1 )
4339, 42eqtrd 2778 . . . . 5 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → (𝐺‘(((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧)) = 1 )
44 fveqeq2 6783 . . . . . 6 (𝑥 = (((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧) → ((𝐺𝑥) = 1 ↔ (𝐺‘(((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧)) = 1 ))
4544rspcev 3561 . . . . 5 (((((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧) ∈ 𝑉 ∧ (𝐺‘(((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧)) = 1 ) → ∃𝑥𝑉 (𝐺𝑥) = 1 )
4636, 43, 45syl2anc 584 . . . 4 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → ∃𝑥𝑉 (𝐺𝑥) = 1 )
4746rexlimdv3a 3215 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (∃𝑧𝑉 (𝐺𝑧) ≠ 0 → ∃𝑥𝑉 (𝐺𝑥) = 1 ))
48473adant3 1131 . 2 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → (∃𝑧𝑉 (𝐺𝑧) ≠ 0 → ∃𝑥𝑉 (𝐺𝑥) = 1 ))
4920, 48mpd 15 1 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ∃𝑥𝑉 (𝐺𝑥) = 1 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {csn 4561   × cxp 5587   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  Basecbs 16912  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150  1rcur 19737  invrcinvr 19913  DivRingcdr 19991  LModclmod 20123  LVecclvec 20364  LFnlclfn 37071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-drng 19993  df-lmod 20125  df-lvec 20365  df-lfl 37072
This theorem is referenced by:  eqlkr  37113  lkrshp  37119
  Copyright terms: Public domain W3C validator