Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl1 Structured version   Visualization version   GIF version

Theorem lfl1 37011
Description: A nonzero functional has a value of 1 at some argument. (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lfl1.d 𝐷 = (Scalar‘𝑊)
lfl1.o 0 = (0g𝐷)
lfl1.u 1 = (1r𝐷)
lfl1.v 𝑉 = (Base‘𝑊)
lfl1.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lfl1 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ∃𝑥𝑉 (𝐺𝑥) = 1 )
Distinct variable groups:   𝑥,𝐷   𝑥,𝐺   𝑥, 1   𝑥,𝑉   𝑥,𝑊
Allowed substitution hints:   𝐹(𝑥)   0 (𝑥)

Proof of Theorem lfl1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nne 2946 . . . . . . 7 (¬ (𝐺𝑧) ≠ 0 ↔ (𝐺𝑧) = 0 )
21ralbii 3090 . . . . . 6 (∀𝑧𝑉 ¬ (𝐺𝑧) ≠ 0 ↔ ∀𝑧𝑉 (𝐺𝑧) = 0 )
3 lfl1.d . . . . . . . . . 10 𝐷 = (Scalar‘𝑊)
4 eqid 2738 . . . . . . . . . 10 (Base‘𝐷) = (Base‘𝐷)
5 lfl1.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
6 lfl1.f . . . . . . . . . 10 𝐹 = (LFnl‘𝑊)
73, 4, 5, 6lflf 37004 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → 𝐺:𝑉⟶(Base‘𝐷))
87ffnd 6585 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → 𝐺 Fn 𝑉)
9 fconstfv 7070 . . . . . . . . 9 (𝐺:𝑉⟶{ 0 } ↔ (𝐺 Fn 𝑉 ∧ ∀𝑧𝑉 (𝐺𝑧) = 0 ))
109simplbi2 500 . . . . . . . 8 (𝐺 Fn 𝑉 → (∀𝑧𝑉 (𝐺𝑧) = 0𝐺:𝑉⟶{ 0 }))
118, 10syl 17 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (∀𝑧𝑉 (𝐺𝑧) = 0𝐺:𝑉⟶{ 0 }))
12 lfl1.o . . . . . . . . 9 0 = (0g𝐷)
1312fvexi 6770 . . . . . . . 8 0 ∈ V
1413fconst2 7062 . . . . . . 7 (𝐺:𝑉⟶{ 0 } ↔ 𝐺 = (𝑉 × { 0 }))
1511, 14syl6ib 250 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (∀𝑧𝑉 (𝐺𝑧) = 0𝐺 = (𝑉 × { 0 })))
162, 15syl5bi 241 . . . . 5 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (∀𝑧𝑉 ¬ (𝐺𝑧) ≠ 0𝐺 = (𝑉 × { 0 })))
1716necon3ad 2955 . . . 4 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (𝐺 ≠ (𝑉 × { 0 }) → ¬ ∀𝑧𝑉 ¬ (𝐺𝑧) ≠ 0 ))
18 dfrex2 3166 . . . 4 (∃𝑧𝑉 (𝐺𝑧) ≠ 0 ↔ ¬ ∀𝑧𝑉 ¬ (𝐺𝑧) ≠ 0 )
1917, 18syl6ibr 251 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (𝐺 ≠ (𝑉 × { 0 }) → ∃𝑧𝑉 (𝐺𝑧) ≠ 0 ))
20193impia 1115 . 2 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ∃𝑧𝑉 (𝐺𝑧) ≠ 0 )
21 simp1l 1195 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → 𝑊 ∈ LVec)
22 lveclmod 20283 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
2321, 22syl 17 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → 𝑊 ∈ LMod)
243lvecdrng 20282 . . . . . . . 8 (𝑊 ∈ LVec → 𝐷 ∈ DivRing)
2521, 24syl 17 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → 𝐷 ∈ DivRing)
26 simp1r 1196 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → 𝐺𝐹)
27 simp2 1135 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → 𝑧𝑉)
283, 4, 5, 6lflcl 37005 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑧𝑉) → (𝐺𝑧) ∈ (Base‘𝐷))
2921, 26, 27, 28syl3anc 1369 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → (𝐺𝑧) ∈ (Base‘𝐷))
30 simp3 1136 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → (𝐺𝑧) ≠ 0 )
31 eqid 2738 . . . . . . . 8 (invr𝐷) = (invr𝐷)
324, 12, 31drnginvrcl 19923 . . . . . . 7 ((𝐷 ∈ DivRing ∧ (𝐺𝑧) ∈ (Base‘𝐷) ∧ (𝐺𝑧) ≠ 0 ) → ((invr𝐷)‘(𝐺𝑧)) ∈ (Base‘𝐷))
3325, 29, 30, 32syl3anc 1369 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → ((invr𝐷)‘(𝐺𝑧)) ∈ (Base‘𝐷))
34 eqid 2738 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
355, 3, 34, 4lmodvscl 20055 . . . . . 6 ((𝑊 ∈ LMod ∧ ((invr𝐷)‘(𝐺𝑧)) ∈ (Base‘𝐷) ∧ 𝑧𝑉) → (((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧) ∈ 𝑉)
3623, 33, 27, 35syl3anc 1369 . . . . 5 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → (((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧) ∈ 𝑉)
37 eqid 2738 . . . . . . . 8 (.r𝐷) = (.r𝐷)
383, 4, 37, 5, 34, 6lflmul 37009 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (((invr𝐷)‘(𝐺𝑧)) ∈ (Base‘𝐷) ∧ 𝑧𝑉)) → (𝐺‘(((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧)) = (((invr𝐷)‘(𝐺𝑧))(.r𝐷)(𝐺𝑧)))
3923, 26, 33, 27, 38syl112anc 1372 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → (𝐺‘(((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧)) = (((invr𝐷)‘(𝐺𝑧))(.r𝐷)(𝐺𝑧)))
40 lfl1.u . . . . . . . 8 1 = (1r𝐷)
414, 12, 37, 40, 31drnginvrl 19925 . . . . . . 7 ((𝐷 ∈ DivRing ∧ (𝐺𝑧) ∈ (Base‘𝐷) ∧ (𝐺𝑧) ≠ 0 ) → (((invr𝐷)‘(𝐺𝑧))(.r𝐷)(𝐺𝑧)) = 1 )
4225, 29, 30, 41syl3anc 1369 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → (((invr𝐷)‘(𝐺𝑧))(.r𝐷)(𝐺𝑧)) = 1 )
4339, 42eqtrd 2778 . . . . 5 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → (𝐺‘(((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧)) = 1 )
44 fveqeq2 6765 . . . . . 6 (𝑥 = (((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧) → ((𝐺𝑥) = 1 ↔ (𝐺‘(((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧)) = 1 ))
4544rspcev 3552 . . . . 5 (((((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧) ∈ 𝑉 ∧ (𝐺‘(((invr𝐷)‘(𝐺𝑧))( ·𝑠𝑊)𝑧)) = 1 ) → ∃𝑥𝑉 (𝐺𝑥) = 1 )
4636, 43, 45syl2anc 583 . . . 4 (((𝑊 ∈ LVec ∧ 𝐺𝐹) ∧ 𝑧𝑉 ∧ (𝐺𝑧) ≠ 0 ) → ∃𝑥𝑉 (𝐺𝑥) = 1 )
4746rexlimdv3a 3214 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → (∃𝑧𝑉 (𝐺𝑧) ≠ 0 → ∃𝑥𝑉 (𝐺𝑥) = 1 ))
48473adant3 1130 . 2 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → (∃𝑧𝑉 (𝐺𝑧) ≠ 0 → ∃𝑥𝑉 (𝐺𝑥) = 1 ))
4920, 48mpd 15 1 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ∃𝑥𝑉 (𝐺𝑥) = 1 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {csn 4558   × cxp 5578   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  1rcur 19652  invrcinvr 19828  DivRingcdr 19906  LModclmod 20038  LVecclvec 20279  LFnlclfn 36998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lvec 20280  df-lfl 36999
This theorem is referenced by:  eqlkr  37040  lkrshp  37046
  Copyright terms: Public domain W3C validator