Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mbfpos | Structured version Visualization version GIF version |
Description: The positive part of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Jul-2014.) |
Ref | Expression |
---|---|
mbfpos.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
mbfpos.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
Ref | Expression |
---|---|
mbfpos | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex 10900 | . . . . . . 7 ⊢ 0 ∈ V | |
2 | 1 | fvconst2 7061 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 × {0})‘𝑥) = 0) |
3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {0})‘𝑥) = 0) |
4 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
5 | mbfpos.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
6 | eqid 2738 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
7 | 6 | fvmpt2 6868 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
8 | 4, 5, 7 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
9 | 3, 8 | breq12d 5083 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ↔ 0 ≤ 𝐵)) |
10 | 9, 8, 3 | ifbieq12d 4484 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝐴 × {0})‘𝑥)) = if(0 ≤ 𝐵, 𝐵, 0)) |
11 | 10 | mpteq2dva 5170 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝐴 × {0})‘𝑥))) = (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))) |
12 | 0re 10908 | . . . . 5 ⊢ 0 ∈ ℝ | |
13 | 12 | fconst6 6648 | . . . 4 ⊢ (𝐴 × {0}):𝐴⟶ℝ |
14 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 × {0}):𝐴⟶ℝ) |
15 | mbfpos.2 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) | |
16 | 15, 5 | mbfdm2 24706 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ dom vol) |
17 | 0cnd 10899 | . . . 4 ⊢ (𝜑 → 0 ∈ ℂ) | |
18 | mbfconst 24702 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ 0 ∈ ℂ) → (𝐴 × {0}) ∈ MblFn) | |
19 | 16, 17, 18 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝐴 × {0}) ∈ MblFn) |
20 | 5 | fmpttd 6971 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) |
21 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑦if(((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝐴 × {0})‘𝑥)) | |
22 | nfcv 2906 | . . . . . 6 ⊢ Ⅎ𝑥((𝐴 × {0})‘𝑦) | |
23 | nfcv 2906 | . . . . . 6 ⊢ Ⅎ𝑥 ≤ | |
24 | nffvmpt1 6767 | . . . . . 6 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) | |
25 | 22, 23, 24 | nfbr 5117 | . . . . 5 ⊢ Ⅎ𝑥((𝐴 × {0})‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) |
26 | 25, 24, 22 | nfif 4486 | . . . 4 ⊢ Ⅎ𝑥if(((𝐴 × {0})‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦), ((𝐴 × {0})‘𝑦)) |
27 | fveq2 6756 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐴 × {0})‘𝑥) = ((𝐴 × {0})‘𝑦)) | |
28 | fveq2 6756 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)) | |
29 | 27, 28 | breq12d 5083 | . . . . 5 ⊢ (𝑥 = 𝑦 → (((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ↔ ((𝐴 × {0})‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦))) |
30 | 29, 28, 27 | ifbieq12d 4484 | . . . 4 ⊢ (𝑥 = 𝑦 → if(((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝐴 × {0})‘𝑥)) = if(((𝐴 × {0})‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦), ((𝐴 × {0})‘𝑦))) |
31 | 21, 26, 30 | cbvmpt 5181 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ if(((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝐴 × {0})‘𝑥))) = (𝑦 ∈ 𝐴 ↦ if(((𝐴 × {0})‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦), ((𝐴 × {0})‘𝑦))) |
32 | 14, 19, 20, 15, 31 | mbfmax 24718 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝐴 × {0})‘𝑥))) ∈ MblFn) |
33 | 11, 32 | eqeltrrd 2840 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ifcif 4456 {csn 4558 class class class wbr 5070 ↦ cmpt 5153 × cxp 5578 dom cdm 5580 ⟶wf 6414 ‘cfv 6418 ℂcc 10800 ℝcr 10801 0cc0 10802 ≤ cle 10941 volcvol 24532 MblFncmbf 24683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xadd 12778 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-xmet 20503 df-met 20504 df-ovol 24533 df-vol 24534 df-mbf 24688 |
This theorem is referenced by: mbfposb 24722 mbfi1flimlem 24792 itgreval 24866 ibladdlem 24889 iblabslem 24897 mbfposadd 35751 ibladdnclem 35760 iblabsnclem 35767 itgmulc2nclem2 35771 |
Copyright terms: Public domain | W3C validator |