| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mbfpos | Structured version Visualization version GIF version | ||
| Description: The positive part of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Jul-2014.) |
| Ref | Expression |
|---|---|
| mbfpos.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| mbfpos.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
| Ref | Expression |
|---|---|
| mbfpos | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 11237 | . . . . . . 7 ⊢ 0 ∈ V | |
| 2 | 1 | fvconst2 7206 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 × {0})‘𝑥) = 0) |
| 3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {0})‘𝑥) = 0) |
| 4 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 5 | mbfpos.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 6 | eqid 2734 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 7 | 6 | fvmpt2 7007 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 8 | 4, 5, 7 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 9 | 3, 8 | breq12d 5136 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ↔ 0 ≤ 𝐵)) |
| 10 | 9, 8, 3 | ifbieq12d 4534 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝐴 × {0})‘𝑥)) = if(0 ≤ 𝐵, 𝐵, 0)) |
| 11 | 10 | mpteq2dva 5222 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝐴 × {0})‘𝑥))) = (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))) |
| 12 | 0re 11245 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 13 | 12 | fconst6 6778 | . . . 4 ⊢ (𝐴 × {0}):𝐴⟶ℝ |
| 14 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 × {0}):𝐴⟶ℝ) |
| 15 | mbfpos.2 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) | |
| 16 | 15, 5 | mbfdm2 25609 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ dom vol) |
| 17 | 0cnd 11236 | . . . 4 ⊢ (𝜑 → 0 ∈ ℂ) | |
| 18 | mbfconst 25605 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ 0 ∈ ℂ) → (𝐴 × {0}) ∈ MblFn) | |
| 19 | 16, 17, 18 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐴 × {0}) ∈ MblFn) |
| 20 | 5 | fmpttd 7115 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) |
| 21 | nfcv 2897 | . . . 4 ⊢ Ⅎ𝑦if(((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝐴 × {0})‘𝑥)) | |
| 22 | nfcv 2897 | . . . . . 6 ⊢ Ⅎ𝑥((𝐴 × {0})‘𝑦) | |
| 23 | nfcv 2897 | . . . . . 6 ⊢ Ⅎ𝑥 ≤ | |
| 24 | nffvmpt1 6897 | . . . . . 6 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) | |
| 25 | 22, 23, 24 | nfbr 5170 | . . . . 5 ⊢ Ⅎ𝑥((𝐴 × {0})‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) |
| 26 | 25, 24, 22 | nfif 4536 | . . . 4 ⊢ Ⅎ𝑥if(((𝐴 × {0})‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦), ((𝐴 × {0})‘𝑦)) |
| 27 | fveq2 6886 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐴 × {0})‘𝑥) = ((𝐴 × {0})‘𝑦)) | |
| 28 | fveq2 6886 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)) | |
| 29 | 27, 28 | breq12d 5136 | . . . . 5 ⊢ (𝑥 = 𝑦 → (((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ↔ ((𝐴 × {0})‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦))) |
| 30 | 29, 28, 27 | ifbieq12d 4534 | . . . 4 ⊢ (𝑥 = 𝑦 → if(((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝐴 × {0})‘𝑥)) = if(((𝐴 × {0})‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦), ((𝐴 × {0})‘𝑦))) |
| 31 | 21, 26, 30 | cbvmpt 5233 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ if(((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝐴 × {0})‘𝑥))) = (𝑦 ∈ 𝐴 ↦ if(((𝐴 × {0})‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦), ((𝐴 × {0})‘𝑦))) |
| 32 | 14, 19, 20, 15, 31 | mbfmax 25621 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝐴 × {0})‘𝑥))) ∈ MblFn) |
| 33 | 11, 32 | eqeltrrd 2834 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ifcif 4505 {csn 4606 class class class wbr 5123 ↦ cmpt 5205 × cxp 5663 dom cdm 5665 ⟶wf 6537 ‘cfv 6541 ℂcc 11135 ℝcr 11136 0cc0 11137 ≤ cle 11278 volcvol 25435 MblFncmbf 25586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-map 8850 df-pm 8851 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-inf 9465 df-oi 9532 df-dju 9923 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-n0 12510 df-z 12597 df-uz 12861 df-q 12973 df-rp 13017 df-xadd 13137 df-ioo 13373 df-ico 13375 df-icc 13376 df-fz 13530 df-fzo 13677 df-fl 13814 df-seq 14025 df-exp 14085 df-hash 14353 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-clim 15507 df-sum 15706 df-xmet 21320 df-met 21321 df-ovol 25436 df-vol 25437 df-mbf 25591 |
| This theorem is referenced by: mbfposb 25625 mbfi1flimlem 25694 itgreval 25769 ibladdlem 25792 iblabslem 25800 mbfposadd 37649 ibladdnclem 37658 iblabsnclem 37665 itgmulc2nclem2 37669 |
| Copyright terms: Public domain | W3C validator |