![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mbfpos | Structured version Visualization version GIF version |
Description: The positive part of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Jul-2014.) |
Ref | Expression |
---|---|
mbfpos.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
mbfpos.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
Ref | Expression |
---|---|
mbfpos | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex 11253 | . . . . . . 7 ⊢ 0 ∈ V | |
2 | 1 | fvconst2 7224 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 × {0})‘𝑥) = 0) |
3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {0})‘𝑥) = 0) |
4 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
5 | mbfpos.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
6 | eqid 2735 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
7 | 6 | fvmpt2 7027 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
8 | 4, 5, 7 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
9 | 3, 8 | breq12d 5161 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ↔ 0 ≤ 𝐵)) |
10 | 9, 8, 3 | ifbieq12d 4559 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝐴 × {0})‘𝑥)) = if(0 ≤ 𝐵, 𝐵, 0)) |
11 | 10 | mpteq2dva 5248 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝐴 × {0})‘𝑥))) = (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))) |
12 | 0re 11261 | . . . . 5 ⊢ 0 ∈ ℝ | |
13 | 12 | fconst6 6799 | . . . 4 ⊢ (𝐴 × {0}):𝐴⟶ℝ |
14 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 × {0}):𝐴⟶ℝ) |
15 | mbfpos.2 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) | |
16 | 15, 5 | mbfdm2 25686 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ dom vol) |
17 | 0cnd 11252 | . . . 4 ⊢ (𝜑 → 0 ∈ ℂ) | |
18 | mbfconst 25682 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ 0 ∈ ℂ) → (𝐴 × {0}) ∈ MblFn) | |
19 | 16, 17, 18 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐴 × {0}) ∈ MblFn) |
20 | 5 | fmpttd 7135 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) |
21 | nfcv 2903 | . . . 4 ⊢ Ⅎ𝑦if(((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝐴 × {0})‘𝑥)) | |
22 | nfcv 2903 | . . . . . 6 ⊢ Ⅎ𝑥((𝐴 × {0})‘𝑦) | |
23 | nfcv 2903 | . . . . . 6 ⊢ Ⅎ𝑥 ≤ | |
24 | nffvmpt1 6918 | . . . . . 6 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) | |
25 | 22, 23, 24 | nfbr 5195 | . . . . 5 ⊢ Ⅎ𝑥((𝐴 × {0})‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) |
26 | 25, 24, 22 | nfif 4561 | . . . 4 ⊢ Ⅎ𝑥if(((𝐴 × {0})‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦), ((𝐴 × {0})‘𝑦)) |
27 | fveq2 6907 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐴 × {0})‘𝑥) = ((𝐴 × {0})‘𝑦)) | |
28 | fveq2 6907 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)) | |
29 | 27, 28 | breq12d 5161 | . . . . 5 ⊢ (𝑥 = 𝑦 → (((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ↔ ((𝐴 × {0})‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦))) |
30 | 29, 28, 27 | ifbieq12d 4559 | . . . 4 ⊢ (𝑥 = 𝑦 → if(((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝐴 × {0})‘𝑥)) = if(((𝐴 × {0})‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦), ((𝐴 × {0})‘𝑦))) |
31 | 21, 26, 30 | cbvmpt 5259 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ if(((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝐴 × {0})‘𝑥))) = (𝑦 ∈ 𝐴 ↦ if(((𝐴 × {0})‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦), ((𝐴 × {0})‘𝑦))) |
32 | 14, 19, 20, 15, 31 | mbfmax 25698 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝐴 × {0})‘𝑥))) ∈ MblFn) |
33 | 11, 32 | eqeltrrd 2840 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ifcif 4531 {csn 4631 class class class wbr 5148 ↦ cmpt 5231 × cxp 5687 dom cdm 5689 ⟶wf 6559 ‘cfv 6563 ℂcc 11151 ℝcr 11152 0cc0 11153 ≤ cle 11294 volcvol 25512 MblFncmbf 25663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-oi 9548 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-q 12989 df-rp 13033 df-xadd 13153 df-ioo 13388 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-sum 15720 df-xmet 21375 df-met 21376 df-ovol 25513 df-vol 25514 df-mbf 25668 |
This theorem is referenced by: mbfposb 25702 mbfi1flimlem 25772 itgreval 25847 ibladdlem 25870 iblabslem 25878 mbfposadd 37654 ibladdnclem 37663 iblabsnclem 37670 itgmulc2nclem2 37674 |
Copyright terms: Public domain | W3C validator |