MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfpos Structured version   Visualization version   GIF version

Theorem mbfpos 25624
Description: The positive part of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Jul-2014.)
Hypotheses
Ref Expression
mbfpos.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
mbfpos.2 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
Assertion
Ref Expression
mbfpos (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem mbfpos
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 c0ex 11240 . . . . . . 7 0 ∈ V
21fvconst2 7216 . . . . . 6 (𝑥𝐴 → ((𝐴 × {0})‘𝑥) = 0)
32adantl 480 . . . . 5 ((𝜑𝑥𝐴) → ((𝐴 × {0})‘𝑥) = 0)
4 simpr 483 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝐴)
5 mbfpos.1 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
6 eqid 2725 . . . . . . 7 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
76fvmpt2 7015 . . . . . 6 ((𝑥𝐴𝐵 ∈ ℝ) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
84, 5, 7syl2anc 582 . . . . 5 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
93, 8breq12d 5162 . . . 4 ((𝜑𝑥𝐴) → (((𝐴 × {0})‘𝑥) ≤ ((𝑥𝐴𝐵)‘𝑥) ↔ 0 ≤ 𝐵))
109, 8, 3ifbieq12d 4558 . . 3 ((𝜑𝑥𝐴) → if(((𝐴 × {0})‘𝑥) ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), ((𝐴 × {0})‘𝑥)) = if(0 ≤ 𝐵, 𝐵, 0))
1110mpteq2dva 5249 . 2 (𝜑 → (𝑥𝐴 ↦ if(((𝐴 × {0})‘𝑥) ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), ((𝐴 × {0})‘𝑥))) = (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)))
12 0re 11248 . . . . 5 0 ∈ ℝ
1312fconst6 6787 . . . 4 (𝐴 × {0}):𝐴⟶ℝ
1413a1i 11 . . 3 (𝜑 → (𝐴 × {0}):𝐴⟶ℝ)
15 mbfpos.2 . . . . 5 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
1615, 5mbfdm2 25610 . . . 4 (𝜑𝐴 ∈ dom vol)
17 0cnd 11239 . . . 4 (𝜑 → 0 ∈ ℂ)
18 mbfconst 25606 . . . 4 ((𝐴 ∈ dom vol ∧ 0 ∈ ℂ) → (𝐴 × {0}) ∈ MblFn)
1916, 17, 18syl2anc 582 . . 3 (𝜑 → (𝐴 × {0}) ∈ MblFn)
205fmpttd 7124 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
21 nfcv 2891 . . . 4 𝑦if(((𝐴 × {0})‘𝑥) ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), ((𝐴 × {0})‘𝑥))
22 nfcv 2891 . . . . . 6 𝑥((𝐴 × {0})‘𝑦)
23 nfcv 2891 . . . . . 6 𝑥
24 nffvmpt1 6907 . . . . . 6 𝑥((𝑥𝐴𝐵)‘𝑦)
2522, 23, 24nfbr 5196 . . . . 5 𝑥((𝐴 × {0})‘𝑦) ≤ ((𝑥𝐴𝐵)‘𝑦)
2625, 24, 22nfif 4560 . . . 4 𝑥if(((𝐴 × {0})‘𝑦) ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), ((𝐴 × {0})‘𝑦))
27 fveq2 6896 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 × {0})‘𝑥) = ((𝐴 × {0})‘𝑦))
28 fveq2 6896 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝐴𝐵)‘𝑥) = ((𝑥𝐴𝐵)‘𝑦))
2927, 28breq12d 5162 . . . . 5 (𝑥 = 𝑦 → (((𝐴 × {0})‘𝑥) ≤ ((𝑥𝐴𝐵)‘𝑥) ↔ ((𝐴 × {0})‘𝑦) ≤ ((𝑥𝐴𝐵)‘𝑦)))
3029, 28, 27ifbieq12d 4558 . . . 4 (𝑥 = 𝑦 → if(((𝐴 × {0})‘𝑥) ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), ((𝐴 × {0})‘𝑥)) = if(((𝐴 × {0})‘𝑦) ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), ((𝐴 × {0})‘𝑦)))
3121, 26, 30cbvmpt 5260 . . 3 (𝑥𝐴 ↦ if(((𝐴 × {0})‘𝑥) ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), ((𝐴 × {0})‘𝑥))) = (𝑦𝐴 ↦ if(((𝐴 × {0})‘𝑦) ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), ((𝐴 × {0})‘𝑦)))
3214, 19, 20, 15, 31mbfmax 25622 . 2 (𝜑 → (𝑥𝐴 ↦ if(((𝐴 × {0})‘𝑥) ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), ((𝐴 × {0})‘𝑥))) ∈ MblFn)
3311, 32eqeltrrd 2826 1 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  ifcif 4530  {csn 4630   class class class wbr 5149  cmpt 5232   × cxp 5676  dom cdm 5678  wf 6545  cfv 6549  cc 11138  cr 11139  0cc0 11140  cle 11281  volcvol 25436  MblFncmbf 25587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-inf 9468  df-oi 9535  df-dju 9926  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-n0 12506  df-z 12592  df-uz 12856  df-q 12966  df-rp 13010  df-xadd 13128  df-ioo 13363  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-fl 13793  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-clim 15468  df-sum 15669  df-xmet 21289  df-met 21290  df-ovol 25437  df-vol 25438  df-mbf 25592
This theorem is referenced by:  mbfposb  25626  mbfi1flimlem  25696  itgreval  25770  ibladdlem  25793  iblabslem  25801  mbfposadd  37271  ibladdnclem  37280  iblabsnclem  37287  itgmulc2nclem2  37291
  Copyright terms: Public domain W3C validator