Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mbfpos | Structured version Visualization version GIF version |
Description: The positive part of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Jul-2014.) |
Ref | Expression |
---|---|
mbfpos.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
mbfpos.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
Ref | Expression |
---|---|
mbfpos | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex 10969 | . . . . . . 7 ⊢ 0 ∈ V | |
2 | 1 | fvconst2 7079 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 × {0})‘𝑥) = 0) |
3 | 2 | adantl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {0})‘𝑥) = 0) |
4 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
5 | mbfpos.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
6 | eqid 2738 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
7 | 6 | fvmpt2 6886 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
8 | 4, 5, 7 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
9 | 3, 8 | breq12d 5087 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ↔ 0 ≤ 𝐵)) |
10 | 9, 8, 3 | ifbieq12d 4487 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝐴 × {0})‘𝑥)) = if(0 ≤ 𝐵, 𝐵, 0)) |
11 | 10 | mpteq2dva 5174 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝐴 × {0})‘𝑥))) = (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0))) |
12 | 0re 10977 | . . . . 5 ⊢ 0 ∈ ℝ | |
13 | 12 | fconst6 6664 | . . . 4 ⊢ (𝐴 × {0}):𝐴⟶ℝ |
14 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐴 × {0}):𝐴⟶ℝ) |
15 | mbfpos.2 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) | |
16 | 15, 5 | mbfdm2 24801 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ dom vol) |
17 | 0cnd 10968 | . . . 4 ⊢ (𝜑 → 0 ∈ ℂ) | |
18 | mbfconst 24797 | . . . 4 ⊢ ((𝐴 ∈ dom vol ∧ 0 ∈ ℂ) → (𝐴 × {0}) ∈ MblFn) | |
19 | 16, 17, 18 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐴 × {0}) ∈ MblFn) |
20 | 5 | fmpttd 6989 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) |
21 | nfcv 2907 | . . . 4 ⊢ Ⅎ𝑦if(((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝐴 × {0})‘𝑥)) | |
22 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑥((𝐴 × {0})‘𝑦) | |
23 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑥 ≤ | |
24 | nffvmpt1 6785 | . . . . . 6 ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) | |
25 | 22, 23, 24 | nfbr 5121 | . . . . 5 ⊢ Ⅎ𝑥((𝐴 × {0})‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) |
26 | 25, 24, 22 | nfif 4489 | . . . 4 ⊢ Ⅎ𝑥if(((𝐴 × {0})‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦), ((𝐴 × {0})‘𝑦)) |
27 | fveq2 6774 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝐴 × {0})‘𝑥) = ((𝐴 × {0})‘𝑦)) | |
28 | fveq2 6774 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦)) | |
29 | 27, 28 | breq12d 5087 | . . . . 5 ⊢ (𝑥 = 𝑦 → (((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) ↔ ((𝐴 × {0})‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦))) |
30 | 29, 28, 27 | ifbieq12d 4487 | . . . 4 ⊢ (𝑥 = 𝑦 → if(((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝐴 × {0})‘𝑥)) = if(((𝐴 × {0})‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦), ((𝐴 × {0})‘𝑦))) |
31 | 21, 26, 30 | cbvmpt 5185 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ if(((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝐴 × {0})‘𝑥))) = (𝑦 ∈ 𝐴 ↦ if(((𝐴 × {0})‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦), ((𝐴 × {0})‘𝑦))) |
32 | 14, 19, 20, 15, 31 | mbfmax 24813 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(((𝐴 × {0})‘𝑥) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥), ((𝐴 × {0})‘𝑥))) ∈ MblFn) |
33 | 11, 32 | eqeltrrd 2840 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ifcif 4459 {csn 4561 class class class wbr 5074 ↦ cmpt 5157 × cxp 5587 dom cdm 5589 ⟶wf 6429 ‘cfv 6433 ℂcc 10869 ℝcr 10870 0cc0 10871 ≤ cle 11010 volcvol 24627 MblFncmbf 24778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-xadd 12849 df-ioo 13083 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-xmet 20590 df-met 20591 df-ovol 24628 df-vol 24629 df-mbf 24783 |
This theorem is referenced by: mbfposb 24817 mbfi1flimlem 24887 itgreval 24961 ibladdlem 24984 iblabslem 24992 mbfposadd 35824 ibladdnclem 35833 iblabsnclem 35840 itgmulc2nclem2 35844 |
Copyright terms: Public domain | W3C validator |