MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfpos Structured version   Visualization version   GIF version

Theorem mbfpos 25623
Description: The positive part of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Jul-2014.)
Hypotheses
Ref Expression
mbfpos.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
mbfpos.2 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
Assertion
Ref Expression
mbfpos (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem mbfpos
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 c0ex 11237 . . . . . . 7 0 ∈ V
21fvconst2 7206 . . . . . 6 (𝑥𝐴 → ((𝐴 × {0})‘𝑥) = 0)
32adantl 481 . . . . 5 ((𝜑𝑥𝐴) → ((𝐴 × {0})‘𝑥) = 0)
4 simpr 484 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝐴)
5 mbfpos.1 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
6 eqid 2734 . . . . . . 7 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
76fvmpt2 7007 . . . . . 6 ((𝑥𝐴𝐵 ∈ ℝ) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
84, 5, 7syl2anc 584 . . . . 5 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
93, 8breq12d 5136 . . . 4 ((𝜑𝑥𝐴) → (((𝐴 × {0})‘𝑥) ≤ ((𝑥𝐴𝐵)‘𝑥) ↔ 0 ≤ 𝐵))
109, 8, 3ifbieq12d 4534 . . 3 ((𝜑𝑥𝐴) → if(((𝐴 × {0})‘𝑥) ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), ((𝐴 × {0})‘𝑥)) = if(0 ≤ 𝐵, 𝐵, 0))
1110mpteq2dva 5222 . 2 (𝜑 → (𝑥𝐴 ↦ if(((𝐴 × {0})‘𝑥) ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), ((𝐴 × {0})‘𝑥))) = (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)))
12 0re 11245 . . . . 5 0 ∈ ℝ
1312fconst6 6778 . . . 4 (𝐴 × {0}):𝐴⟶ℝ
1413a1i 11 . . 3 (𝜑 → (𝐴 × {0}):𝐴⟶ℝ)
15 mbfpos.2 . . . . 5 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
1615, 5mbfdm2 25609 . . . 4 (𝜑𝐴 ∈ dom vol)
17 0cnd 11236 . . . 4 (𝜑 → 0 ∈ ℂ)
18 mbfconst 25605 . . . 4 ((𝐴 ∈ dom vol ∧ 0 ∈ ℂ) → (𝐴 × {0}) ∈ MblFn)
1916, 17, 18syl2anc 584 . . 3 (𝜑 → (𝐴 × {0}) ∈ MblFn)
205fmpttd 7115 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
21 nfcv 2897 . . . 4 𝑦if(((𝐴 × {0})‘𝑥) ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), ((𝐴 × {0})‘𝑥))
22 nfcv 2897 . . . . . 6 𝑥((𝐴 × {0})‘𝑦)
23 nfcv 2897 . . . . . 6 𝑥
24 nffvmpt1 6897 . . . . . 6 𝑥((𝑥𝐴𝐵)‘𝑦)
2522, 23, 24nfbr 5170 . . . . 5 𝑥((𝐴 × {0})‘𝑦) ≤ ((𝑥𝐴𝐵)‘𝑦)
2625, 24, 22nfif 4536 . . . 4 𝑥if(((𝐴 × {0})‘𝑦) ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), ((𝐴 × {0})‘𝑦))
27 fveq2 6886 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 × {0})‘𝑥) = ((𝐴 × {0})‘𝑦))
28 fveq2 6886 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝐴𝐵)‘𝑥) = ((𝑥𝐴𝐵)‘𝑦))
2927, 28breq12d 5136 . . . . 5 (𝑥 = 𝑦 → (((𝐴 × {0})‘𝑥) ≤ ((𝑥𝐴𝐵)‘𝑥) ↔ ((𝐴 × {0})‘𝑦) ≤ ((𝑥𝐴𝐵)‘𝑦)))
3029, 28, 27ifbieq12d 4534 . . . 4 (𝑥 = 𝑦 → if(((𝐴 × {0})‘𝑥) ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), ((𝐴 × {0})‘𝑥)) = if(((𝐴 × {0})‘𝑦) ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), ((𝐴 × {0})‘𝑦)))
3121, 26, 30cbvmpt 5233 . . 3 (𝑥𝐴 ↦ if(((𝐴 × {0})‘𝑥) ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), ((𝐴 × {0})‘𝑥))) = (𝑦𝐴 ↦ if(((𝐴 × {0})‘𝑦) ≤ ((𝑥𝐴𝐵)‘𝑦), ((𝑥𝐴𝐵)‘𝑦), ((𝐴 × {0})‘𝑦)))
3214, 19, 20, 15, 31mbfmax 25621 . 2 (𝜑 → (𝑥𝐴 ↦ if(((𝐴 × {0})‘𝑥) ≤ ((𝑥𝐴𝐵)‘𝑥), ((𝑥𝐴𝐵)‘𝑥), ((𝐴 × {0})‘𝑥))) ∈ MblFn)
3311, 32eqeltrrd 2834 1 (𝜑 → (𝑥𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  ifcif 4505  {csn 4606   class class class wbr 5123  cmpt 5205   × cxp 5663  dom cdm 5665  wf 6537  cfv 6541  cc 11135  cr 11136  0cc0 11137  cle 11278  volcvol 25435  MblFncmbf 25586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-pm 8851  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-inf 9465  df-oi 9532  df-dju 9923  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-z 12597  df-uz 12861  df-q 12973  df-rp 13017  df-xadd 13137  df-ioo 13373  df-ico 13375  df-icc 13376  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14353  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-clim 15507  df-sum 15706  df-xmet 21320  df-met 21321  df-ovol 25436  df-vol 25437  df-mbf 25591
This theorem is referenced by:  mbfposb  25625  mbfi1flimlem  25694  itgreval  25769  ibladdlem  25792  iblabslem  25800  mbfposadd  37649  ibladdnclem  37658  iblabsnclem  37665  itgmulc2nclem2  37669
  Copyright terms: Public domain W3C validator