MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1plusgfvi Structured version   Visualization version   GIF version

Theorem ply1plusgfvi 22259
Description: Protection compatibility of the univariate polynomial addition. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Assertion
Ref Expression
ply1plusgfvi (+g‘(Poly1𝑅)) = (+g‘(Poly1‘( I ‘𝑅)))

Proof of Theorem ply1plusgfvi
StepHypRef Expression
1 fvi 6985 . . . . 5 (𝑅 ∈ V → ( I ‘𝑅) = 𝑅)
21fveq2d 6911 . . . 4 (𝑅 ∈ V → (Poly1‘( I ‘𝑅)) = (Poly1𝑅))
32fveq2d 6911 . . 3 (𝑅 ∈ V → (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1𝑅)))
4 eqid 2735 . . . . . 6 (Poly1‘∅) = (Poly1‘∅)
5 eqid 2735 . . . . . 6 (1o mPoly ∅) = (1o mPoly ∅)
6 eqid 2735 . . . . . 6 (+g‘(Poly1‘∅)) = (+g‘(Poly1‘∅))
74, 5, 6ply1plusg 22241 . . . . 5 (+g‘(Poly1‘∅)) = (+g‘(1o mPoly ∅))
8 eqid 2735 . . . . . . 7 (1o mPwSer ∅) = (1o mPwSer ∅)
9 eqid 2735 . . . . . . 7 (+g‘(1o mPoly ∅)) = (+g‘(1o mPoly ∅))
105, 8, 9mplplusg 22045 . . . . . 6 (+g‘(1o mPoly ∅)) = (+g‘(1o mPwSer ∅))
11 base0 17250 . . . . . . . . . 10 ∅ = (Base‘∅)
12 psr1baslem 22202 . . . . . . . . . 10 (ℕ0m 1o) = {𝑎 ∈ (ℕ0m 1o) ∣ (𝑎 “ ℕ) ∈ Fin}
13 eqid 2735 . . . . . . . . . 10 (Base‘(1o mPwSer ∅)) = (Base‘(1o mPwSer ∅))
14 1on 8517 . . . . . . . . . . 11 1o ∈ On
1514a1i 11 . . . . . . . . . 10 (⊤ → 1o ∈ On)
168, 11, 12, 13, 15psrbas 21971 . . . . . . . . 9 (⊤ → (Base‘(1o mPwSer ∅)) = (∅ ↑m (ℕ0m 1o)))
1716mptru 1544 . . . . . . . 8 (Base‘(1o mPwSer ∅)) = (∅ ↑m (ℕ0m 1o))
18 0nn0 12539 . . . . . . . . . . 11 0 ∈ ℕ0
1918fconst6 6799 . . . . . . . . . 10 (1o × {0}):1o⟶ℕ0
20 nn0ex 12530 . . . . . . . . . . 11 0 ∈ V
21 1oex 8515 . . . . . . . . . . 11 1o ∈ V
2220, 21elmap 8910 . . . . . . . . . 10 ((1o × {0}) ∈ (ℕ0m 1o) ↔ (1o × {0}):1o⟶ℕ0)
2319, 22mpbir 231 . . . . . . . . 9 (1o × {0}) ∈ (ℕ0m 1o)
24 ne0i 4347 . . . . . . . . 9 ((1o × {0}) ∈ (ℕ0m 1o) → (ℕ0m 1o) ≠ ∅)
25 map0b 8922 . . . . . . . . 9 ((ℕ0m 1o) ≠ ∅ → (∅ ↑m (ℕ0m 1o)) = ∅)
2623, 24, 25mp2b 10 . . . . . . . 8 (∅ ↑m (ℕ0m 1o)) = ∅
2717, 26eqtr2i 2764 . . . . . . 7 ∅ = (Base‘(1o mPwSer ∅))
28 eqid 2735 . . . . . . 7 (+g‘∅) = (+g‘∅)
29 eqid 2735 . . . . . . 7 (+g‘(1o mPwSer ∅)) = (+g‘(1o mPwSer ∅))
308, 27, 28, 29psrplusg 21974 . . . . . 6 (+g‘(1o mPwSer ∅)) = ( ∘f (+g‘∅) ↾ (∅ × ∅))
31 xp0 6180 . . . . . . 7 (∅ × ∅) = ∅
3231reseq2i 5997 . . . . . 6 ( ∘f (+g‘∅) ↾ (∅ × ∅)) = ( ∘f (+g‘∅) ↾ ∅)
3310, 30, 323eqtri 2767 . . . . 5 (+g‘(1o mPoly ∅)) = ( ∘f (+g‘∅) ↾ ∅)
34 res0 6004 . . . . . 6 ( ∘f (+g‘∅) ↾ ∅) = ∅
35 plusgid 17325 . . . . . . 7 +g = Slot (+g‘ndx)
3635str0 17223 . . . . . 6 ∅ = (+g‘∅)
3734, 36eqtri 2763 . . . . 5 ( ∘f (+g‘∅) ↾ ∅) = (+g‘∅)
387, 33, 373eqtri 2767 . . . 4 (+g‘(Poly1‘∅)) = (+g‘∅)
39 fvprc 6899 . . . . . 6 𝑅 ∈ V → ( I ‘𝑅) = ∅)
4039fveq2d 6911 . . . . 5 𝑅 ∈ V → (Poly1‘( I ‘𝑅)) = (Poly1‘∅))
4140fveq2d 6911 . . . 4 𝑅 ∈ V → (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘∅)))
42 fvprc 6899 . . . . 5 𝑅 ∈ V → (Poly1𝑅) = ∅)
4342fveq2d 6911 . . . 4 𝑅 ∈ V → (+g‘(Poly1𝑅)) = (+g‘∅))
4438, 41, 433eqtr4a 2801 . . 3 𝑅 ∈ V → (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1𝑅)))
453, 44pm2.61i 182 . 2 (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1𝑅))
4645eqcomi 2744 1 (+g‘(Poly1𝑅)) = (+g‘(Poly1‘( I ‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wtru 1538  wcel 2106  wne 2938  Vcvv 3478  c0 4339  {csn 4631   I cid 5582   × cxp 5687  cres 5691  Oncon0 6386  wf 6559  cfv 6563  (class class class)co 7431  f cof 7695  1oc1o 8498  m cmap 8865  0cc0 11153  0cn0 12524  ndxcnx 17227  Basecbs 17245  +gcplusg 17298   mPwSer cmps 21942   mPoly cmpl 21944  Poly1cpl1 22194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-tset 17317  df-ple 17318  df-psr 21947  df-mpl 21949  df-opsr 21951  df-psr1 22197  df-ply1 22199
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator