![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1plusgfvi | Structured version Visualization version GIF version |
Description: Protection compatibility of the univariate polynomial addition. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
Ref | Expression |
---|---|
ply1plusgfvi | ⊢ (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘( I ‘𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvi 6998 | . . . . 5 ⊢ (𝑅 ∈ V → ( I ‘𝑅) = 𝑅) | |
2 | 1 | fveq2d 6924 | . . . 4 ⊢ (𝑅 ∈ V → (Poly1‘( I ‘𝑅)) = (Poly1‘𝑅)) |
3 | 2 | fveq2d 6924 | . . 3 ⊢ (𝑅 ∈ V → (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘𝑅))) |
4 | eqid 2740 | . . . . . 6 ⊢ (Poly1‘∅) = (Poly1‘∅) | |
5 | eqid 2740 | . . . . . 6 ⊢ (1o mPoly ∅) = (1o mPoly ∅) | |
6 | eqid 2740 | . . . . . 6 ⊢ (+g‘(Poly1‘∅)) = (+g‘(Poly1‘∅)) | |
7 | 4, 5, 6 | ply1plusg 22246 | . . . . 5 ⊢ (+g‘(Poly1‘∅)) = (+g‘(1o mPoly ∅)) |
8 | eqid 2740 | . . . . . . 7 ⊢ (1o mPwSer ∅) = (1o mPwSer ∅) | |
9 | eqid 2740 | . . . . . . 7 ⊢ (+g‘(1o mPoly ∅)) = (+g‘(1o mPoly ∅)) | |
10 | 5, 8, 9 | mplplusg 22050 | . . . . . 6 ⊢ (+g‘(1o mPoly ∅)) = (+g‘(1o mPwSer ∅)) |
11 | base0 17263 | . . . . . . . . . 10 ⊢ ∅ = (Base‘∅) | |
12 | psr1baslem 22207 | . . . . . . . . . 10 ⊢ (ℕ0 ↑m 1o) = {𝑎 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑎 “ ℕ) ∈ Fin} | |
13 | eqid 2740 | . . . . . . . . . 10 ⊢ (Base‘(1o mPwSer ∅)) = (Base‘(1o mPwSer ∅)) | |
14 | 1on 8534 | . . . . . . . . . . 11 ⊢ 1o ∈ On | |
15 | 14 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → 1o ∈ On) |
16 | 8, 11, 12, 13, 15 | psrbas 21976 | . . . . . . . . 9 ⊢ (⊤ → (Base‘(1o mPwSer ∅)) = (∅ ↑m (ℕ0 ↑m 1o))) |
17 | 16 | mptru 1544 | . . . . . . . 8 ⊢ (Base‘(1o mPwSer ∅)) = (∅ ↑m (ℕ0 ↑m 1o)) |
18 | 0nn0 12568 | . . . . . . . . . . 11 ⊢ 0 ∈ ℕ0 | |
19 | 18 | fconst6 6811 | . . . . . . . . . 10 ⊢ (1o × {0}):1o⟶ℕ0 |
20 | nn0ex 12559 | . . . . . . . . . . 11 ⊢ ℕ0 ∈ V | |
21 | 1oex 8532 | . . . . . . . . . . 11 ⊢ 1o ∈ V | |
22 | 20, 21 | elmap 8929 | . . . . . . . . . 10 ⊢ ((1o × {0}) ∈ (ℕ0 ↑m 1o) ↔ (1o × {0}):1o⟶ℕ0) |
23 | 19, 22 | mpbir 231 | . . . . . . . . 9 ⊢ (1o × {0}) ∈ (ℕ0 ↑m 1o) |
24 | ne0i 4364 | . . . . . . . . 9 ⊢ ((1o × {0}) ∈ (ℕ0 ↑m 1o) → (ℕ0 ↑m 1o) ≠ ∅) | |
25 | map0b 8941 | . . . . . . . . 9 ⊢ ((ℕ0 ↑m 1o) ≠ ∅ → (∅ ↑m (ℕ0 ↑m 1o)) = ∅) | |
26 | 23, 24, 25 | mp2b 10 | . . . . . . . 8 ⊢ (∅ ↑m (ℕ0 ↑m 1o)) = ∅ |
27 | 17, 26 | eqtr2i 2769 | . . . . . . 7 ⊢ ∅ = (Base‘(1o mPwSer ∅)) |
28 | eqid 2740 | . . . . . . 7 ⊢ (+g‘∅) = (+g‘∅) | |
29 | eqid 2740 | . . . . . . 7 ⊢ (+g‘(1o mPwSer ∅)) = (+g‘(1o mPwSer ∅)) | |
30 | 8, 27, 28, 29 | psrplusg 21979 | . . . . . 6 ⊢ (+g‘(1o mPwSer ∅)) = ( ∘f (+g‘∅) ↾ (∅ × ∅)) |
31 | xp0 6189 | . . . . . . 7 ⊢ (∅ × ∅) = ∅ | |
32 | 31 | reseq2i 6006 | . . . . . 6 ⊢ ( ∘f (+g‘∅) ↾ (∅ × ∅)) = ( ∘f (+g‘∅) ↾ ∅) |
33 | 10, 30, 32 | 3eqtri 2772 | . . . . 5 ⊢ (+g‘(1o mPoly ∅)) = ( ∘f (+g‘∅) ↾ ∅) |
34 | res0 6013 | . . . . . 6 ⊢ ( ∘f (+g‘∅) ↾ ∅) = ∅ | |
35 | plusgid 17338 | . . . . . . 7 ⊢ +g = Slot (+g‘ndx) | |
36 | 35 | str0 17236 | . . . . . 6 ⊢ ∅ = (+g‘∅) |
37 | 34, 36 | eqtri 2768 | . . . . 5 ⊢ ( ∘f (+g‘∅) ↾ ∅) = (+g‘∅) |
38 | 7, 33, 37 | 3eqtri 2772 | . . . 4 ⊢ (+g‘(Poly1‘∅)) = (+g‘∅) |
39 | fvprc 6912 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → ( I ‘𝑅) = ∅) | |
40 | 39 | fveq2d 6924 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (Poly1‘( I ‘𝑅)) = (Poly1‘∅)) |
41 | 40 | fveq2d 6924 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘∅))) |
42 | fvprc 6912 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (Poly1‘𝑅) = ∅) | |
43 | 42 | fveq2d 6924 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (+g‘(Poly1‘𝑅)) = (+g‘∅)) |
44 | 38, 41, 43 | 3eqtr4a 2806 | . . 3 ⊢ (¬ 𝑅 ∈ V → (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘𝑅))) |
45 | 3, 44 | pm2.61i 182 | . 2 ⊢ (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘𝑅)) |
46 | 45 | eqcomi 2749 | 1 ⊢ (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘( I ‘𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ∅c0 4352 {csn 4648 I cid 5592 × cxp 5698 ↾ cres 5702 Oncon0 6395 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ∘f cof 7712 1oc1o 8515 ↑m cmap 8884 0cc0 11184 ℕ0cn0 12553 ndxcnx 17240 Basecbs 17258 +gcplusg 17311 mPwSer cmps 21947 mPoly cmpl 21949 Poly1cpl1 22199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-tset 17330 df-ple 17331 df-psr 21952 df-mpl 21954 df-opsr 21956 df-psr1 22202 df-ply1 22204 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |