| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1plusgfvi | Structured version Visualization version GIF version | ||
| Description: Protection compatibility of the univariate polynomial addition. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
| Ref | Expression |
|---|---|
| ply1plusgfvi | ⊢ (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘( I ‘𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvi 6960 | . . . . 5 ⊢ (𝑅 ∈ V → ( I ‘𝑅) = 𝑅) | |
| 2 | 1 | fveq2d 6885 | . . . 4 ⊢ (𝑅 ∈ V → (Poly1‘( I ‘𝑅)) = (Poly1‘𝑅)) |
| 3 | 2 | fveq2d 6885 | . . 3 ⊢ (𝑅 ∈ V → (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘𝑅))) |
| 4 | eqid 2736 | . . . . . 6 ⊢ (Poly1‘∅) = (Poly1‘∅) | |
| 5 | eqid 2736 | . . . . . 6 ⊢ (1o mPoly ∅) = (1o mPoly ∅) | |
| 6 | eqid 2736 | . . . . . 6 ⊢ (+g‘(Poly1‘∅)) = (+g‘(Poly1‘∅)) | |
| 7 | 4, 5, 6 | ply1plusg 22164 | . . . . 5 ⊢ (+g‘(Poly1‘∅)) = (+g‘(1o mPoly ∅)) |
| 8 | eqid 2736 | . . . . . . 7 ⊢ (1o mPwSer ∅) = (1o mPwSer ∅) | |
| 9 | eqid 2736 | . . . . . . 7 ⊢ (+g‘(1o mPoly ∅)) = (+g‘(1o mPoly ∅)) | |
| 10 | 5, 8, 9 | mplplusg 21972 | . . . . . 6 ⊢ (+g‘(1o mPoly ∅)) = (+g‘(1o mPwSer ∅)) |
| 11 | base0 17238 | . . . . . . . . . 10 ⊢ ∅ = (Base‘∅) | |
| 12 | psr1baslem 22125 | . . . . . . . . . 10 ⊢ (ℕ0 ↑m 1o) = {𝑎 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑎 “ ℕ) ∈ Fin} | |
| 13 | eqid 2736 | . . . . . . . . . 10 ⊢ (Base‘(1o mPwSer ∅)) = (Base‘(1o mPwSer ∅)) | |
| 14 | 1on 8497 | . . . . . . . . . . 11 ⊢ 1o ∈ On | |
| 15 | 14 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → 1o ∈ On) |
| 16 | 8, 11, 12, 13, 15 | psrbas 21898 | . . . . . . . . 9 ⊢ (⊤ → (Base‘(1o mPwSer ∅)) = (∅ ↑m (ℕ0 ↑m 1o))) |
| 17 | 16 | mptru 1547 | . . . . . . . 8 ⊢ (Base‘(1o mPwSer ∅)) = (∅ ↑m (ℕ0 ↑m 1o)) |
| 18 | 0nn0 12521 | . . . . . . . . . . 11 ⊢ 0 ∈ ℕ0 | |
| 19 | 18 | fconst6 6773 | . . . . . . . . . 10 ⊢ (1o × {0}):1o⟶ℕ0 |
| 20 | nn0ex 12512 | . . . . . . . . . . 11 ⊢ ℕ0 ∈ V | |
| 21 | 1oex 8495 | . . . . . . . . . . 11 ⊢ 1o ∈ V | |
| 22 | 20, 21 | elmap 8890 | . . . . . . . . . 10 ⊢ ((1o × {0}) ∈ (ℕ0 ↑m 1o) ↔ (1o × {0}):1o⟶ℕ0) |
| 23 | 19, 22 | mpbir 231 | . . . . . . . . 9 ⊢ (1o × {0}) ∈ (ℕ0 ↑m 1o) |
| 24 | ne0i 4321 | . . . . . . . . 9 ⊢ ((1o × {0}) ∈ (ℕ0 ↑m 1o) → (ℕ0 ↑m 1o) ≠ ∅) | |
| 25 | map0b 8902 | . . . . . . . . 9 ⊢ ((ℕ0 ↑m 1o) ≠ ∅ → (∅ ↑m (ℕ0 ↑m 1o)) = ∅) | |
| 26 | 23, 24, 25 | mp2b 10 | . . . . . . . 8 ⊢ (∅ ↑m (ℕ0 ↑m 1o)) = ∅ |
| 27 | 17, 26 | eqtr2i 2760 | . . . . . . 7 ⊢ ∅ = (Base‘(1o mPwSer ∅)) |
| 28 | eqid 2736 | . . . . . . 7 ⊢ (+g‘∅) = (+g‘∅) | |
| 29 | eqid 2736 | . . . . . . 7 ⊢ (+g‘(1o mPwSer ∅)) = (+g‘(1o mPwSer ∅)) | |
| 30 | 8, 27, 28, 29 | psrplusg 21901 | . . . . . 6 ⊢ (+g‘(1o mPwSer ∅)) = ( ∘f (+g‘∅) ↾ (∅ × ∅)) |
| 31 | xp0 6152 | . . . . . . 7 ⊢ (∅ × ∅) = ∅ | |
| 32 | 31 | reseq2i 5968 | . . . . . 6 ⊢ ( ∘f (+g‘∅) ↾ (∅ × ∅)) = ( ∘f (+g‘∅) ↾ ∅) |
| 33 | 10, 30, 32 | 3eqtri 2763 | . . . . 5 ⊢ (+g‘(1o mPoly ∅)) = ( ∘f (+g‘∅) ↾ ∅) |
| 34 | res0 5975 | . . . . . 6 ⊢ ( ∘f (+g‘∅) ↾ ∅) = ∅ | |
| 35 | plusgid 17303 | . . . . . . 7 ⊢ +g = Slot (+g‘ndx) | |
| 36 | 35 | str0 17213 | . . . . . 6 ⊢ ∅ = (+g‘∅) |
| 37 | 34, 36 | eqtri 2759 | . . . . 5 ⊢ ( ∘f (+g‘∅) ↾ ∅) = (+g‘∅) |
| 38 | 7, 33, 37 | 3eqtri 2763 | . . . 4 ⊢ (+g‘(Poly1‘∅)) = (+g‘∅) |
| 39 | fvprc 6873 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → ( I ‘𝑅) = ∅) | |
| 40 | 39 | fveq2d 6885 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (Poly1‘( I ‘𝑅)) = (Poly1‘∅)) |
| 41 | 40 | fveq2d 6885 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘∅))) |
| 42 | fvprc 6873 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (Poly1‘𝑅) = ∅) | |
| 43 | 42 | fveq2d 6885 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (+g‘(Poly1‘𝑅)) = (+g‘∅)) |
| 44 | 38, 41, 43 | 3eqtr4a 2797 | . . 3 ⊢ (¬ 𝑅 ∈ V → (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘𝑅))) |
| 45 | 3, 44 | pm2.61i 182 | . 2 ⊢ (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘𝑅)) |
| 46 | 45 | eqcomi 2745 | 1 ⊢ (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘( I ‘𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2933 Vcvv 3464 ∅c0 4313 {csn 4606 I cid 5552 × cxp 5657 ↾ cres 5661 Oncon0 6357 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ∘f cof 7674 1oc1o 8478 ↑m cmap 8845 0cc0 11134 ℕ0cn0 12506 ndxcnx 17217 Basecbs 17233 +gcplusg 17276 mPwSer cmps 21869 mPoly cmpl 21871 Poly1cpl1 22117 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-sca 17292 df-vsca 17293 df-tset 17295 df-ple 17296 df-psr 21874 df-mpl 21876 df-opsr 21878 df-psr1 22120 df-ply1 22122 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |