| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1plusgfvi | Structured version Visualization version GIF version | ||
| Description: Protection compatibility of the univariate polynomial addition. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
| Ref | Expression |
|---|---|
| ply1plusgfvi | ⊢ (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘( I ‘𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvi 6937 | . . . . 5 ⊢ (𝑅 ∈ V → ( I ‘𝑅) = 𝑅) | |
| 2 | 1 | fveq2d 6862 | . . . 4 ⊢ (𝑅 ∈ V → (Poly1‘( I ‘𝑅)) = (Poly1‘𝑅)) |
| 3 | 2 | fveq2d 6862 | . . 3 ⊢ (𝑅 ∈ V → (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘𝑅))) |
| 4 | eqid 2729 | . . . . . 6 ⊢ (Poly1‘∅) = (Poly1‘∅) | |
| 5 | eqid 2729 | . . . . . 6 ⊢ (1o mPoly ∅) = (1o mPoly ∅) | |
| 6 | eqid 2729 | . . . . . 6 ⊢ (+g‘(Poly1‘∅)) = (+g‘(Poly1‘∅)) | |
| 7 | 4, 5, 6 | ply1plusg 22108 | . . . . 5 ⊢ (+g‘(Poly1‘∅)) = (+g‘(1o mPoly ∅)) |
| 8 | eqid 2729 | . . . . . . 7 ⊢ (1o mPwSer ∅) = (1o mPwSer ∅) | |
| 9 | eqid 2729 | . . . . . . 7 ⊢ (+g‘(1o mPoly ∅)) = (+g‘(1o mPoly ∅)) | |
| 10 | 5, 8, 9 | mplplusg 21916 | . . . . . 6 ⊢ (+g‘(1o mPoly ∅)) = (+g‘(1o mPwSer ∅)) |
| 11 | base0 17184 | . . . . . . . . . 10 ⊢ ∅ = (Base‘∅) | |
| 12 | psr1baslem 22069 | . . . . . . . . . 10 ⊢ (ℕ0 ↑m 1o) = {𝑎 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑎 “ ℕ) ∈ Fin} | |
| 13 | eqid 2729 | . . . . . . . . . 10 ⊢ (Base‘(1o mPwSer ∅)) = (Base‘(1o mPwSer ∅)) | |
| 14 | 1on 8446 | . . . . . . . . . . 11 ⊢ 1o ∈ On | |
| 15 | 14 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → 1o ∈ On) |
| 16 | 8, 11, 12, 13, 15 | psrbas 21842 | . . . . . . . . 9 ⊢ (⊤ → (Base‘(1o mPwSer ∅)) = (∅ ↑m (ℕ0 ↑m 1o))) |
| 17 | 16 | mptru 1547 | . . . . . . . 8 ⊢ (Base‘(1o mPwSer ∅)) = (∅ ↑m (ℕ0 ↑m 1o)) |
| 18 | 0nn0 12457 | . . . . . . . . . . 11 ⊢ 0 ∈ ℕ0 | |
| 19 | 18 | fconst6 6750 | . . . . . . . . . 10 ⊢ (1o × {0}):1o⟶ℕ0 |
| 20 | nn0ex 12448 | . . . . . . . . . . 11 ⊢ ℕ0 ∈ V | |
| 21 | 1oex 8444 | . . . . . . . . . . 11 ⊢ 1o ∈ V | |
| 22 | 20, 21 | elmap 8844 | . . . . . . . . . 10 ⊢ ((1o × {0}) ∈ (ℕ0 ↑m 1o) ↔ (1o × {0}):1o⟶ℕ0) |
| 23 | 19, 22 | mpbir 231 | . . . . . . . . 9 ⊢ (1o × {0}) ∈ (ℕ0 ↑m 1o) |
| 24 | ne0i 4304 | . . . . . . . . 9 ⊢ ((1o × {0}) ∈ (ℕ0 ↑m 1o) → (ℕ0 ↑m 1o) ≠ ∅) | |
| 25 | map0b 8856 | . . . . . . . . 9 ⊢ ((ℕ0 ↑m 1o) ≠ ∅ → (∅ ↑m (ℕ0 ↑m 1o)) = ∅) | |
| 26 | 23, 24, 25 | mp2b 10 | . . . . . . . 8 ⊢ (∅ ↑m (ℕ0 ↑m 1o)) = ∅ |
| 27 | 17, 26 | eqtr2i 2753 | . . . . . . 7 ⊢ ∅ = (Base‘(1o mPwSer ∅)) |
| 28 | eqid 2729 | . . . . . . 7 ⊢ (+g‘∅) = (+g‘∅) | |
| 29 | eqid 2729 | . . . . . . 7 ⊢ (+g‘(1o mPwSer ∅)) = (+g‘(1o mPwSer ∅)) | |
| 30 | 8, 27, 28, 29 | psrplusg 21845 | . . . . . 6 ⊢ (+g‘(1o mPwSer ∅)) = ( ∘f (+g‘∅) ↾ (∅ × ∅)) |
| 31 | xp0 6131 | . . . . . . 7 ⊢ (∅ × ∅) = ∅ | |
| 32 | 31 | reseq2i 5947 | . . . . . 6 ⊢ ( ∘f (+g‘∅) ↾ (∅ × ∅)) = ( ∘f (+g‘∅) ↾ ∅) |
| 33 | 10, 30, 32 | 3eqtri 2756 | . . . . 5 ⊢ (+g‘(1o mPoly ∅)) = ( ∘f (+g‘∅) ↾ ∅) |
| 34 | res0 5954 | . . . . . 6 ⊢ ( ∘f (+g‘∅) ↾ ∅) = ∅ | |
| 35 | plusgid 17247 | . . . . . . 7 ⊢ +g = Slot (+g‘ndx) | |
| 36 | 35 | str0 17159 | . . . . . 6 ⊢ ∅ = (+g‘∅) |
| 37 | 34, 36 | eqtri 2752 | . . . . 5 ⊢ ( ∘f (+g‘∅) ↾ ∅) = (+g‘∅) |
| 38 | 7, 33, 37 | 3eqtri 2756 | . . . 4 ⊢ (+g‘(Poly1‘∅)) = (+g‘∅) |
| 39 | fvprc 6850 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → ( I ‘𝑅) = ∅) | |
| 40 | 39 | fveq2d 6862 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (Poly1‘( I ‘𝑅)) = (Poly1‘∅)) |
| 41 | 40 | fveq2d 6862 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘∅))) |
| 42 | fvprc 6850 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (Poly1‘𝑅) = ∅) | |
| 43 | 42 | fveq2d 6862 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (+g‘(Poly1‘𝑅)) = (+g‘∅)) |
| 44 | 38, 41, 43 | 3eqtr4a 2790 | . . 3 ⊢ (¬ 𝑅 ∈ V → (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘𝑅))) |
| 45 | 3, 44 | pm2.61i 182 | . 2 ⊢ (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘𝑅)) |
| 46 | 45 | eqcomi 2738 | 1 ⊢ (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘( I ‘𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ∅c0 4296 {csn 4589 I cid 5532 × cxp 5636 ↾ cres 5640 Oncon0 6332 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 1oc1o 8427 ↑m cmap 8799 0cc0 11068 ℕ0cn0 12442 ndxcnx 17163 Basecbs 17179 +gcplusg 17220 mPwSer cmps 21813 mPoly cmpl 21815 Poly1cpl1 22061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-tset 17239 df-ple 17240 df-psr 21818 df-mpl 21820 df-opsr 21822 df-psr1 22064 df-ply1 22066 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |