| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1plusgfvi | Structured version Visualization version GIF version | ||
| Description: Protection compatibility of the univariate polynomial addition. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
| Ref | Expression |
|---|---|
| ply1plusgfvi | ⊢ (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘( I ‘𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvi 6907 | . . . . 5 ⊢ (𝑅 ∈ V → ( I ‘𝑅) = 𝑅) | |
| 2 | 1 | fveq2d 6835 | . . . 4 ⊢ (𝑅 ∈ V → (Poly1‘( I ‘𝑅)) = (Poly1‘𝑅)) |
| 3 | 2 | fveq2d 6835 | . . 3 ⊢ (𝑅 ∈ V → (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘𝑅))) |
| 4 | eqid 2733 | . . . . . 6 ⊢ (Poly1‘∅) = (Poly1‘∅) | |
| 5 | eqid 2733 | . . . . . 6 ⊢ (1o mPoly ∅) = (1o mPoly ∅) | |
| 6 | eqid 2733 | . . . . . 6 ⊢ (+g‘(Poly1‘∅)) = (+g‘(Poly1‘∅)) | |
| 7 | 4, 5, 6 | ply1plusg 22146 | . . . . 5 ⊢ (+g‘(Poly1‘∅)) = (+g‘(1o mPoly ∅)) |
| 8 | eqid 2733 | . . . . . . 7 ⊢ (1o mPwSer ∅) = (1o mPwSer ∅) | |
| 9 | eqid 2733 | . . . . . . 7 ⊢ (+g‘(1o mPoly ∅)) = (+g‘(1o mPoly ∅)) | |
| 10 | 5, 8, 9 | mplplusg 21954 | . . . . . 6 ⊢ (+g‘(1o mPoly ∅)) = (+g‘(1o mPwSer ∅)) |
| 11 | base0 17135 | . . . . . . . . . 10 ⊢ ∅ = (Base‘∅) | |
| 12 | psr1baslem 22107 | . . . . . . . . . 10 ⊢ (ℕ0 ↑m 1o) = {𝑎 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑎 “ ℕ) ∈ Fin} | |
| 13 | eqid 2733 | . . . . . . . . . 10 ⊢ (Base‘(1o mPwSer ∅)) = (Base‘(1o mPwSer ∅)) | |
| 14 | 1on 8406 | . . . . . . . . . . 11 ⊢ 1o ∈ On | |
| 15 | 14 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → 1o ∈ On) |
| 16 | 8, 11, 12, 13, 15 | psrbas 21880 | . . . . . . . . 9 ⊢ (⊤ → (Base‘(1o mPwSer ∅)) = (∅ ↑m (ℕ0 ↑m 1o))) |
| 17 | 16 | mptru 1548 | . . . . . . . 8 ⊢ (Base‘(1o mPwSer ∅)) = (∅ ↑m (ℕ0 ↑m 1o)) |
| 18 | 0nn0 12406 | . . . . . . . . . . 11 ⊢ 0 ∈ ℕ0 | |
| 19 | 18 | fconst6 6721 | . . . . . . . . . 10 ⊢ (1o × {0}):1o⟶ℕ0 |
| 20 | nn0ex 12397 | . . . . . . . . . . 11 ⊢ ℕ0 ∈ V | |
| 21 | 1oex 8404 | . . . . . . . . . . 11 ⊢ 1o ∈ V | |
| 22 | 20, 21 | elmap 8804 | . . . . . . . . . 10 ⊢ ((1o × {0}) ∈ (ℕ0 ↑m 1o) ↔ (1o × {0}):1o⟶ℕ0) |
| 23 | 19, 22 | mpbir 231 | . . . . . . . . 9 ⊢ (1o × {0}) ∈ (ℕ0 ↑m 1o) |
| 24 | ne0i 4292 | . . . . . . . . 9 ⊢ ((1o × {0}) ∈ (ℕ0 ↑m 1o) → (ℕ0 ↑m 1o) ≠ ∅) | |
| 25 | map0b 8816 | . . . . . . . . 9 ⊢ ((ℕ0 ↑m 1o) ≠ ∅ → (∅ ↑m (ℕ0 ↑m 1o)) = ∅) | |
| 26 | 23, 24, 25 | mp2b 10 | . . . . . . . 8 ⊢ (∅ ↑m (ℕ0 ↑m 1o)) = ∅ |
| 27 | 17, 26 | eqtr2i 2757 | . . . . . . 7 ⊢ ∅ = (Base‘(1o mPwSer ∅)) |
| 28 | eqid 2733 | . . . . . . 7 ⊢ (+g‘∅) = (+g‘∅) | |
| 29 | eqid 2733 | . . . . . . 7 ⊢ (+g‘(1o mPwSer ∅)) = (+g‘(1o mPwSer ∅)) | |
| 30 | 8, 27, 28, 29 | psrplusg 21883 | . . . . . 6 ⊢ (+g‘(1o mPwSer ∅)) = ( ∘f (+g‘∅) ↾ (∅ × ∅)) |
| 31 | xp0 5721 | . . . . . . 7 ⊢ (∅ × ∅) = ∅ | |
| 32 | 31 | reseq2i 5932 | . . . . . 6 ⊢ ( ∘f (+g‘∅) ↾ (∅ × ∅)) = ( ∘f (+g‘∅) ↾ ∅) |
| 33 | 10, 30, 32 | 3eqtri 2760 | . . . . 5 ⊢ (+g‘(1o mPoly ∅)) = ( ∘f (+g‘∅) ↾ ∅) |
| 34 | res0 5939 | . . . . . 6 ⊢ ( ∘f (+g‘∅) ↾ ∅) = ∅ | |
| 35 | plusgid 17198 | . . . . . . 7 ⊢ +g = Slot (+g‘ndx) | |
| 36 | 35 | str0 17110 | . . . . . 6 ⊢ ∅ = (+g‘∅) |
| 37 | 34, 36 | eqtri 2756 | . . . . 5 ⊢ ( ∘f (+g‘∅) ↾ ∅) = (+g‘∅) |
| 38 | 7, 33, 37 | 3eqtri 2760 | . . . 4 ⊢ (+g‘(Poly1‘∅)) = (+g‘∅) |
| 39 | fvprc 6823 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → ( I ‘𝑅) = ∅) | |
| 40 | 39 | fveq2d 6835 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (Poly1‘( I ‘𝑅)) = (Poly1‘∅)) |
| 41 | 40 | fveq2d 6835 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘∅))) |
| 42 | fvprc 6823 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (Poly1‘𝑅) = ∅) | |
| 43 | 42 | fveq2d 6835 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (+g‘(Poly1‘𝑅)) = (+g‘∅)) |
| 44 | 38, 41, 43 | 3eqtr4a 2794 | . . 3 ⊢ (¬ 𝑅 ∈ V → (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘𝑅))) |
| 45 | 3, 44 | pm2.61i 182 | . 2 ⊢ (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘𝑅)) |
| 46 | 45 | eqcomi 2742 | 1 ⊢ (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘( I ‘𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ⊤wtru 1542 ∈ wcel 2113 ≠ wne 2930 Vcvv 3438 ∅c0 4284 {csn 4577 I cid 5515 × cxp 5619 ↾ cres 5623 Oncon0 6314 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ∘f cof 7617 1oc1o 8387 ↑m cmap 8759 0cc0 11016 ℕ0cn0 12391 ndxcnx 17114 Basecbs 17130 +gcplusg 17171 mPwSer cmps 21851 mPoly cmpl 21853 Poly1cpl1 22099 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-fsupp 9256 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-z 12479 df-dec 12599 df-uz 12743 df-fz 13418 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-mulr 17185 df-sca 17187 df-vsca 17188 df-tset 17190 df-ple 17191 df-psr 21856 df-mpl 21858 df-opsr 21860 df-psr1 22102 df-ply1 22104 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |