| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1plusgfvi | Structured version Visualization version GIF version | ||
| Description: Protection compatibility of the univariate polynomial addition. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
| Ref | Expression |
|---|---|
| ply1plusgfvi | ⊢ (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘( I ‘𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvi 6919 | . . . . 5 ⊢ (𝑅 ∈ V → ( I ‘𝑅) = 𝑅) | |
| 2 | 1 | fveq2d 6844 | . . . 4 ⊢ (𝑅 ∈ V → (Poly1‘( I ‘𝑅)) = (Poly1‘𝑅)) |
| 3 | 2 | fveq2d 6844 | . . 3 ⊢ (𝑅 ∈ V → (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘𝑅))) |
| 4 | eqid 2729 | . . . . . 6 ⊢ (Poly1‘∅) = (Poly1‘∅) | |
| 5 | eqid 2729 | . . . . . 6 ⊢ (1o mPoly ∅) = (1o mPoly ∅) | |
| 6 | eqid 2729 | . . . . . 6 ⊢ (+g‘(Poly1‘∅)) = (+g‘(Poly1‘∅)) | |
| 7 | 4, 5, 6 | ply1plusg 22141 | . . . . 5 ⊢ (+g‘(Poly1‘∅)) = (+g‘(1o mPoly ∅)) |
| 8 | eqid 2729 | . . . . . . 7 ⊢ (1o mPwSer ∅) = (1o mPwSer ∅) | |
| 9 | eqid 2729 | . . . . . . 7 ⊢ (+g‘(1o mPoly ∅)) = (+g‘(1o mPoly ∅)) | |
| 10 | 5, 8, 9 | mplplusg 21949 | . . . . . 6 ⊢ (+g‘(1o mPoly ∅)) = (+g‘(1o mPwSer ∅)) |
| 11 | base0 17160 | . . . . . . . . . 10 ⊢ ∅ = (Base‘∅) | |
| 12 | psr1baslem 22102 | . . . . . . . . . 10 ⊢ (ℕ0 ↑m 1o) = {𝑎 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑎 “ ℕ) ∈ Fin} | |
| 13 | eqid 2729 | . . . . . . . . . 10 ⊢ (Base‘(1o mPwSer ∅)) = (Base‘(1o mPwSer ∅)) | |
| 14 | 1on 8423 | . . . . . . . . . . 11 ⊢ 1o ∈ On | |
| 15 | 14 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → 1o ∈ On) |
| 16 | 8, 11, 12, 13, 15 | psrbas 21875 | . . . . . . . . 9 ⊢ (⊤ → (Base‘(1o mPwSer ∅)) = (∅ ↑m (ℕ0 ↑m 1o))) |
| 17 | 16 | mptru 1547 | . . . . . . . 8 ⊢ (Base‘(1o mPwSer ∅)) = (∅ ↑m (ℕ0 ↑m 1o)) |
| 18 | 0nn0 12433 | . . . . . . . . . . 11 ⊢ 0 ∈ ℕ0 | |
| 19 | 18 | fconst6 6732 | . . . . . . . . . 10 ⊢ (1o × {0}):1o⟶ℕ0 |
| 20 | nn0ex 12424 | . . . . . . . . . . 11 ⊢ ℕ0 ∈ V | |
| 21 | 1oex 8421 | . . . . . . . . . . 11 ⊢ 1o ∈ V | |
| 22 | 20, 21 | elmap 8821 | . . . . . . . . . 10 ⊢ ((1o × {0}) ∈ (ℕ0 ↑m 1o) ↔ (1o × {0}):1o⟶ℕ0) |
| 23 | 19, 22 | mpbir 231 | . . . . . . . . 9 ⊢ (1o × {0}) ∈ (ℕ0 ↑m 1o) |
| 24 | ne0i 4300 | . . . . . . . . 9 ⊢ ((1o × {0}) ∈ (ℕ0 ↑m 1o) → (ℕ0 ↑m 1o) ≠ ∅) | |
| 25 | map0b 8833 | . . . . . . . . 9 ⊢ ((ℕ0 ↑m 1o) ≠ ∅ → (∅ ↑m (ℕ0 ↑m 1o)) = ∅) | |
| 26 | 23, 24, 25 | mp2b 10 | . . . . . . . 8 ⊢ (∅ ↑m (ℕ0 ↑m 1o)) = ∅ |
| 27 | 17, 26 | eqtr2i 2753 | . . . . . . 7 ⊢ ∅ = (Base‘(1o mPwSer ∅)) |
| 28 | eqid 2729 | . . . . . . 7 ⊢ (+g‘∅) = (+g‘∅) | |
| 29 | eqid 2729 | . . . . . . 7 ⊢ (+g‘(1o mPwSer ∅)) = (+g‘(1o mPwSer ∅)) | |
| 30 | 8, 27, 28, 29 | psrplusg 21878 | . . . . . 6 ⊢ (+g‘(1o mPwSer ∅)) = ( ∘f (+g‘∅) ↾ (∅ × ∅)) |
| 31 | xp0 6119 | . . . . . . 7 ⊢ (∅ × ∅) = ∅ | |
| 32 | 31 | reseq2i 5936 | . . . . . 6 ⊢ ( ∘f (+g‘∅) ↾ (∅ × ∅)) = ( ∘f (+g‘∅) ↾ ∅) |
| 33 | 10, 30, 32 | 3eqtri 2756 | . . . . 5 ⊢ (+g‘(1o mPoly ∅)) = ( ∘f (+g‘∅) ↾ ∅) |
| 34 | res0 5943 | . . . . . 6 ⊢ ( ∘f (+g‘∅) ↾ ∅) = ∅ | |
| 35 | plusgid 17223 | . . . . . . 7 ⊢ +g = Slot (+g‘ndx) | |
| 36 | 35 | str0 17135 | . . . . . 6 ⊢ ∅ = (+g‘∅) |
| 37 | 34, 36 | eqtri 2752 | . . . . 5 ⊢ ( ∘f (+g‘∅) ↾ ∅) = (+g‘∅) |
| 38 | 7, 33, 37 | 3eqtri 2756 | . . . 4 ⊢ (+g‘(Poly1‘∅)) = (+g‘∅) |
| 39 | fvprc 6832 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → ( I ‘𝑅) = ∅) | |
| 40 | 39 | fveq2d 6844 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (Poly1‘( I ‘𝑅)) = (Poly1‘∅)) |
| 41 | 40 | fveq2d 6844 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘∅))) |
| 42 | fvprc 6832 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (Poly1‘𝑅) = ∅) | |
| 43 | 42 | fveq2d 6844 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (+g‘(Poly1‘𝑅)) = (+g‘∅)) |
| 44 | 38, 41, 43 | 3eqtr4a 2790 | . . 3 ⊢ (¬ 𝑅 ∈ V → (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘𝑅))) |
| 45 | 3, 44 | pm2.61i 182 | . 2 ⊢ (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘𝑅)) |
| 46 | 45 | eqcomi 2738 | 1 ⊢ (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘( I ‘𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2925 Vcvv 3444 ∅c0 4292 {csn 4585 I cid 5525 × cxp 5629 ↾ cres 5633 Oncon0 6320 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ∘f cof 7631 1oc1o 8404 ↑m cmap 8776 0cc0 11044 ℕ0cn0 12418 ndxcnx 17139 Basecbs 17155 +gcplusg 17196 mPwSer cmps 21846 mPoly cmpl 21848 Poly1cpl1 22094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-tset 17215 df-ple 17216 df-psr 21851 df-mpl 21853 df-opsr 21855 df-psr1 22097 df-ply1 22099 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |