Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ply1plusgfvi | Structured version Visualization version GIF version |
Description: Protection compatibility of the univariate polynomial addition. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
Ref | Expression |
---|---|
ply1plusgfvi | ⊢ (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘( I ‘𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvi 6744 | . . . . 5 ⊢ (𝑅 ∈ V → ( I ‘𝑅) = 𝑅) | |
2 | 1 | fveq2d 6678 | . . . 4 ⊢ (𝑅 ∈ V → (Poly1‘( I ‘𝑅)) = (Poly1‘𝑅)) |
3 | 2 | fveq2d 6678 | . . 3 ⊢ (𝑅 ∈ V → (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘𝑅))) |
4 | eqid 2738 | . . . . . 6 ⊢ (Poly1‘∅) = (Poly1‘∅) | |
5 | eqid 2738 | . . . . . 6 ⊢ (1o mPoly ∅) = (1o mPoly ∅) | |
6 | eqid 2738 | . . . . . 6 ⊢ (+g‘(Poly1‘∅)) = (+g‘(Poly1‘∅)) | |
7 | 4, 5, 6 | ply1plusg 21000 | . . . . 5 ⊢ (+g‘(Poly1‘∅)) = (+g‘(1o mPoly ∅)) |
8 | eqid 2738 | . . . . . . 7 ⊢ (1o mPwSer ∅) = (1o mPwSer ∅) | |
9 | eqid 2738 | . . . . . . 7 ⊢ (+g‘(1o mPoly ∅)) = (+g‘(1o mPoly ∅)) | |
10 | 5, 8, 9 | mplplusg 20995 | . . . . . 6 ⊢ (+g‘(1o mPoly ∅)) = (+g‘(1o mPwSer ∅)) |
11 | base0 16639 | . . . . . . . . . 10 ⊢ ∅ = (Base‘∅) | |
12 | psr1baslem 20960 | . . . . . . . . . 10 ⊢ (ℕ0 ↑m 1o) = {𝑎 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑎 “ ℕ) ∈ Fin} | |
13 | eqid 2738 | . . . . . . . . . 10 ⊢ (Base‘(1o mPwSer ∅)) = (Base‘(1o mPwSer ∅)) | |
14 | 1on 8138 | . . . . . . . . . . 11 ⊢ 1o ∈ On | |
15 | 14 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → 1o ∈ On) |
16 | 8, 11, 12, 13, 15 | psrbas 20757 | . . . . . . . . 9 ⊢ (⊤ → (Base‘(1o mPwSer ∅)) = (∅ ↑m (ℕ0 ↑m 1o))) |
17 | 16 | mptru 1549 | . . . . . . . 8 ⊢ (Base‘(1o mPwSer ∅)) = (∅ ↑m (ℕ0 ↑m 1o)) |
18 | 0nn0 11991 | . . . . . . . . . . 11 ⊢ 0 ∈ ℕ0 | |
19 | 18 | fconst6 6568 | . . . . . . . . . 10 ⊢ (1o × {0}):1o⟶ℕ0 |
20 | nn0ex 11982 | . . . . . . . . . . 11 ⊢ ℕ0 ∈ V | |
21 | 1oex 8144 | . . . . . . . . . . 11 ⊢ 1o ∈ V | |
22 | 20, 21 | elmap 8481 | . . . . . . . . . 10 ⊢ ((1o × {0}) ∈ (ℕ0 ↑m 1o) ↔ (1o × {0}):1o⟶ℕ0) |
23 | 19, 22 | mpbir 234 | . . . . . . . . 9 ⊢ (1o × {0}) ∈ (ℕ0 ↑m 1o) |
24 | ne0i 4223 | . . . . . . . . 9 ⊢ ((1o × {0}) ∈ (ℕ0 ↑m 1o) → (ℕ0 ↑m 1o) ≠ ∅) | |
25 | map0b 8493 | . . . . . . . . 9 ⊢ ((ℕ0 ↑m 1o) ≠ ∅ → (∅ ↑m (ℕ0 ↑m 1o)) = ∅) | |
26 | 23, 24, 25 | mp2b 10 | . . . . . . . 8 ⊢ (∅ ↑m (ℕ0 ↑m 1o)) = ∅ |
27 | 17, 26 | eqtr2i 2762 | . . . . . . 7 ⊢ ∅ = (Base‘(1o mPwSer ∅)) |
28 | eqid 2738 | . . . . . . 7 ⊢ (+g‘∅) = (+g‘∅) | |
29 | eqid 2738 | . . . . . . 7 ⊢ (+g‘(1o mPwSer ∅)) = (+g‘(1o mPwSer ∅)) | |
30 | 8, 27, 28, 29 | psrplusg 20760 | . . . . . 6 ⊢ (+g‘(1o mPwSer ∅)) = ( ∘f (+g‘∅) ↾ (∅ × ∅)) |
31 | xp0 5990 | . . . . . . 7 ⊢ (∅ × ∅) = ∅ | |
32 | 31 | reseq2i 5822 | . . . . . 6 ⊢ ( ∘f (+g‘∅) ↾ (∅ × ∅)) = ( ∘f (+g‘∅) ↾ ∅) |
33 | 10, 30, 32 | 3eqtri 2765 | . . . . 5 ⊢ (+g‘(1o mPoly ∅)) = ( ∘f (+g‘∅) ↾ ∅) |
34 | res0 5829 | . . . . . 6 ⊢ ( ∘f (+g‘∅) ↾ ∅) = ∅ | |
35 | df-plusg 16681 | . . . . . . 7 ⊢ +g = Slot 2 | |
36 | 35 | str0 16638 | . . . . . 6 ⊢ ∅ = (+g‘∅) |
37 | 34, 36 | eqtri 2761 | . . . . 5 ⊢ ( ∘f (+g‘∅) ↾ ∅) = (+g‘∅) |
38 | 7, 33, 37 | 3eqtri 2765 | . . . 4 ⊢ (+g‘(Poly1‘∅)) = (+g‘∅) |
39 | fvprc 6666 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → ( I ‘𝑅) = ∅) | |
40 | 39 | fveq2d 6678 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (Poly1‘( I ‘𝑅)) = (Poly1‘∅)) |
41 | 40 | fveq2d 6678 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘∅))) |
42 | fvprc 6666 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (Poly1‘𝑅) = ∅) | |
43 | 42 | fveq2d 6678 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (+g‘(Poly1‘𝑅)) = (+g‘∅)) |
44 | 38, 41, 43 | 3eqtr4a 2799 | . . 3 ⊢ (¬ 𝑅 ∈ V → (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘𝑅))) |
45 | 3, 44 | pm2.61i 185 | . 2 ⊢ (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘𝑅)) |
46 | 45 | eqcomi 2747 | 1 ⊢ (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘( I ‘𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1542 ⊤wtru 1543 ∈ wcel 2114 ≠ wne 2934 Vcvv 3398 ∅c0 4211 {csn 4516 I cid 5428 × cxp 5523 ↾ cres 5527 Oncon0 6172 ⟶wf 6335 ‘cfv 6339 (class class class)co 7170 ∘f cof 7423 1oc1o 8124 ↑m cmap 8437 0cc0 10615 2c2 11771 ℕ0cn0 11976 Basecbs 16586 +gcplusg 16668 mPwSer cmps 20717 mPoly cmpl 20719 Poly1cpl1 20952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-of 7425 df-om 7600 df-1st 7714 df-2nd 7715 df-supp 7857 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-er 8320 df-map 8439 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-fsupp 8907 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-5 11782 df-6 11783 df-7 11784 df-8 11785 df-9 11786 df-n0 11977 df-z 12063 df-dec 12180 df-uz 12325 df-fz 12982 df-struct 16588 df-ndx 16589 df-slot 16590 df-base 16592 df-sets 16593 df-ress 16594 df-plusg 16681 df-mulr 16682 df-sca 16684 df-vsca 16685 df-tset 16687 df-ple 16688 df-psr 20722 df-mpl 20724 df-opsr 20726 df-psr1 20955 df-ply1 20957 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |