Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ply1plusgfvi | Structured version Visualization version GIF version |
Description: Protection compatibility of the univariate polynomial addition. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
Ref | Expression |
---|---|
ply1plusgfvi | ⊢ (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘( I ‘𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvi 6826 | . . . . 5 ⊢ (𝑅 ∈ V → ( I ‘𝑅) = 𝑅) | |
2 | 1 | fveq2d 6760 | . . . 4 ⊢ (𝑅 ∈ V → (Poly1‘( I ‘𝑅)) = (Poly1‘𝑅)) |
3 | 2 | fveq2d 6760 | . . 3 ⊢ (𝑅 ∈ V → (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘𝑅))) |
4 | eqid 2738 | . . . . . 6 ⊢ (Poly1‘∅) = (Poly1‘∅) | |
5 | eqid 2738 | . . . . . 6 ⊢ (1o mPoly ∅) = (1o mPoly ∅) | |
6 | eqid 2738 | . . . . . 6 ⊢ (+g‘(Poly1‘∅)) = (+g‘(Poly1‘∅)) | |
7 | 4, 5, 6 | ply1plusg 21306 | . . . . 5 ⊢ (+g‘(Poly1‘∅)) = (+g‘(1o mPoly ∅)) |
8 | eqid 2738 | . . . . . . 7 ⊢ (1o mPwSer ∅) = (1o mPwSer ∅) | |
9 | eqid 2738 | . . . . . . 7 ⊢ (+g‘(1o mPoly ∅)) = (+g‘(1o mPoly ∅)) | |
10 | 5, 8, 9 | mplplusg 21301 | . . . . . 6 ⊢ (+g‘(1o mPoly ∅)) = (+g‘(1o mPwSer ∅)) |
11 | base0 16845 | . . . . . . . . . 10 ⊢ ∅ = (Base‘∅) | |
12 | psr1baslem 21266 | . . . . . . . . . 10 ⊢ (ℕ0 ↑m 1o) = {𝑎 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑎 “ ℕ) ∈ Fin} | |
13 | eqid 2738 | . . . . . . . . . 10 ⊢ (Base‘(1o mPwSer ∅)) = (Base‘(1o mPwSer ∅)) | |
14 | 1on 8274 | . . . . . . . . . . 11 ⊢ 1o ∈ On | |
15 | 14 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → 1o ∈ On) |
16 | 8, 11, 12, 13, 15 | psrbas 21057 | . . . . . . . . 9 ⊢ (⊤ → (Base‘(1o mPwSer ∅)) = (∅ ↑m (ℕ0 ↑m 1o))) |
17 | 16 | mptru 1546 | . . . . . . . 8 ⊢ (Base‘(1o mPwSer ∅)) = (∅ ↑m (ℕ0 ↑m 1o)) |
18 | 0nn0 12178 | . . . . . . . . . . 11 ⊢ 0 ∈ ℕ0 | |
19 | 18 | fconst6 6648 | . . . . . . . . . 10 ⊢ (1o × {0}):1o⟶ℕ0 |
20 | nn0ex 12169 | . . . . . . . . . . 11 ⊢ ℕ0 ∈ V | |
21 | 1oex 8280 | . . . . . . . . . . 11 ⊢ 1o ∈ V | |
22 | 20, 21 | elmap 8617 | . . . . . . . . . 10 ⊢ ((1o × {0}) ∈ (ℕ0 ↑m 1o) ↔ (1o × {0}):1o⟶ℕ0) |
23 | 19, 22 | mpbir 230 | . . . . . . . . 9 ⊢ (1o × {0}) ∈ (ℕ0 ↑m 1o) |
24 | ne0i 4265 | . . . . . . . . 9 ⊢ ((1o × {0}) ∈ (ℕ0 ↑m 1o) → (ℕ0 ↑m 1o) ≠ ∅) | |
25 | map0b 8629 | . . . . . . . . 9 ⊢ ((ℕ0 ↑m 1o) ≠ ∅ → (∅ ↑m (ℕ0 ↑m 1o)) = ∅) | |
26 | 23, 24, 25 | mp2b 10 | . . . . . . . 8 ⊢ (∅ ↑m (ℕ0 ↑m 1o)) = ∅ |
27 | 17, 26 | eqtr2i 2767 | . . . . . . 7 ⊢ ∅ = (Base‘(1o mPwSer ∅)) |
28 | eqid 2738 | . . . . . . 7 ⊢ (+g‘∅) = (+g‘∅) | |
29 | eqid 2738 | . . . . . . 7 ⊢ (+g‘(1o mPwSer ∅)) = (+g‘(1o mPwSer ∅)) | |
30 | 8, 27, 28, 29 | psrplusg 21060 | . . . . . 6 ⊢ (+g‘(1o mPwSer ∅)) = ( ∘f (+g‘∅) ↾ (∅ × ∅)) |
31 | xp0 6050 | . . . . . . 7 ⊢ (∅ × ∅) = ∅ | |
32 | 31 | reseq2i 5877 | . . . . . 6 ⊢ ( ∘f (+g‘∅) ↾ (∅ × ∅)) = ( ∘f (+g‘∅) ↾ ∅) |
33 | 10, 30, 32 | 3eqtri 2770 | . . . . 5 ⊢ (+g‘(1o mPoly ∅)) = ( ∘f (+g‘∅) ↾ ∅) |
34 | res0 5884 | . . . . . 6 ⊢ ( ∘f (+g‘∅) ↾ ∅) = ∅ | |
35 | plusgid 16915 | . . . . . . 7 ⊢ +g = Slot (+g‘ndx) | |
36 | 35 | str0 16818 | . . . . . 6 ⊢ ∅ = (+g‘∅) |
37 | 34, 36 | eqtri 2766 | . . . . 5 ⊢ ( ∘f (+g‘∅) ↾ ∅) = (+g‘∅) |
38 | 7, 33, 37 | 3eqtri 2770 | . . . 4 ⊢ (+g‘(Poly1‘∅)) = (+g‘∅) |
39 | fvprc 6748 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → ( I ‘𝑅) = ∅) | |
40 | 39 | fveq2d 6760 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (Poly1‘( I ‘𝑅)) = (Poly1‘∅)) |
41 | 40 | fveq2d 6760 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘∅))) |
42 | fvprc 6748 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (Poly1‘𝑅) = ∅) | |
43 | 42 | fveq2d 6760 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (+g‘(Poly1‘𝑅)) = (+g‘∅)) |
44 | 38, 41, 43 | 3eqtr4a 2805 | . . 3 ⊢ (¬ 𝑅 ∈ V → (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘𝑅))) |
45 | 3, 44 | pm2.61i 182 | . 2 ⊢ (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘𝑅)) |
46 | 45 | eqcomi 2747 | 1 ⊢ (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘( I ‘𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∅c0 4253 {csn 4558 I cid 5479 × cxp 5578 ↾ cres 5582 Oncon0 6251 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 1oc1o 8260 ↑m cmap 8573 0cc0 10802 ℕ0cn0 12163 ndxcnx 16822 Basecbs 16840 +gcplusg 16888 mPwSer cmps 21017 mPoly cmpl 21019 Poly1cpl1 21258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-tset 16907 df-ple 16908 df-psr 21022 df-mpl 21024 df-opsr 21026 df-psr1 21261 df-ply1 21263 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |