MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1plusgfvi Structured version   Visualization version   GIF version

Theorem ply1plusgfvi 22182
Description: Protection compatibility of the univariate polynomial addition. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Assertion
Ref Expression
ply1plusgfvi (+g‘(Poly1𝑅)) = (+g‘(Poly1‘( I ‘𝑅)))

Proof of Theorem ply1plusgfvi
StepHypRef Expression
1 fvi 6960 . . . . 5 (𝑅 ∈ V → ( I ‘𝑅) = 𝑅)
21fveq2d 6885 . . . 4 (𝑅 ∈ V → (Poly1‘( I ‘𝑅)) = (Poly1𝑅))
32fveq2d 6885 . . 3 (𝑅 ∈ V → (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1𝑅)))
4 eqid 2736 . . . . . 6 (Poly1‘∅) = (Poly1‘∅)
5 eqid 2736 . . . . . 6 (1o mPoly ∅) = (1o mPoly ∅)
6 eqid 2736 . . . . . 6 (+g‘(Poly1‘∅)) = (+g‘(Poly1‘∅))
74, 5, 6ply1plusg 22164 . . . . 5 (+g‘(Poly1‘∅)) = (+g‘(1o mPoly ∅))
8 eqid 2736 . . . . . . 7 (1o mPwSer ∅) = (1o mPwSer ∅)
9 eqid 2736 . . . . . . 7 (+g‘(1o mPoly ∅)) = (+g‘(1o mPoly ∅))
105, 8, 9mplplusg 21972 . . . . . 6 (+g‘(1o mPoly ∅)) = (+g‘(1o mPwSer ∅))
11 base0 17238 . . . . . . . . . 10 ∅ = (Base‘∅)
12 psr1baslem 22125 . . . . . . . . . 10 (ℕ0m 1o) = {𝑎 ∈ (ℕ0m 1o) ∣ (𝑎 “ ℕ) ∈ Fin}
13 eqid 2736 . . . . . . . . . 10 (Base‘(1o mPwSer ∅)) = (Base‘(1o mPwSer ∅))
14 1on 8497 . . . . . . . . . . 11 1o ∈ On
1514a1i 11 . . . . . . . . . 10 (⊤ → 1o ∈ On)
168, 11, 12, 13, 15psrbas 21898 . . . . . . . . 9 (⊤ → (Base‘(1o mPwSer ∅)) = (∅ ↑m (ℕ0m 1o)))
1716mptru 1547 . . . . . . . 8 (Base‘(1o mPwSer ∅)) = (∅ ↑m (ℕ0m 1o))
18 0nn0 12521 . . . . . . . . . . 11 0 ∈ ℕ0
1918fconst6 6773 . . . . . . . . . 10 (1o × {0}):1o⟶ℕ0
20 nn0ex 12512 . . . . . . . . . . 11 0 ∈ V
21 1oex 8495 . . . . . . . . . . 11 1o ∈ V
2220, 21elmap 8890 . . . . . . . . . 10 ((1o × {0}) ∈ (ℕ0m 1o) ↔ (1o × {0}):1o⟶ℕ0)
2319, 22mpbir 231 . . . . . . . . 9 (1o × {0}) ∈ (ℕ0m 1o)
24 ne0i 4321 . . . . . . . . 9 ((1o × {0}) ∈ (ℕ0m 1o) → (ℕ0m 1o) ≠ ∅)
25 map0b 8902 . . . . . . . . 9 ((ℕ0m 1o) ≠ ∅ → (∅ ↑m (ℕ0m 1o)) = ∅)
2623, 24, 25mp2b 10 . . . . . . . 8 (∅ ↑m (ℕ0m 1o)) = ∅
2717, 26eqtr2i 2760 . . . . . . 7 ∅ = (Base‘(1o mPwSer ∅))
28 eqid 2736 . . . . . . 7 (+g‘∅) = (+g‘∅)
29 eqid 2736 . . . . . . 7 (+g‘(1o mPwSer ∅)) = (+g‘(1o mPwSer ∅))
308, 27, 28, 29psrplusg 21901 . . . . . 6 (+g‘(1o mPwSer ∅)) = ( ∘f (+g‘∅) ↾ (∅ × ∅))
31 xp0 6152 . . . . . . 7 (∅ × ∅) = ∅
3231reseq2i 5968 . . . . . 6 ( ∘f (+g‘∅) ↾ (∅ × ∅)) = ( ∘f (+g‘∅) ↾ ∅)
3310, 30, 323eqtri 2763 . . . . 5 (+g‘(1o mPoly ∅)) = ( ∘f (+g‘∅) ↾ ∅)
34 res0 5975 . . . . . 6 ( ∘f (+g‘∅) ↾ ∅) = ∅
35 plusgid 17303 . . . . . . 7 +g = Slot (+g‘ndx)
3635str0 17213 . . . . . 6 ∅ = (+g‘∅)
3734, 36eqtri 2759 . . . . 5 ( ∘f (+g‘∅) ↾ ∅) = (+g‘∅)
387, 33, 373eqtri 2763 . . . 4 (+g‘(Poly1‘∅)) = (+g‘∅)
39 fvprc 6873 . . . . . 6 𝑅 ∈ V → ( I ‘𝑅) = ∅)
4039fveq2d 6885 . . . . 5 𝑅 ∈ V → (Poly1‘( I ‘𝑅)) = (Poly1‘∅))
4140fveq2d 6885 . . . 4 𝑅 ∈ V → (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1‘∅)))
42 fvprc 6873 . . . . 5 𝑅 ∈ V → (Poly1𝑅) = ∅)
4342fveq2d 6885 . . . 4 𝑅 ∈ V → (+g‘(Poly1𝑅)) = (+g‘∅))
4438, 41, 433eqtr4a 2797 . . 3 𝑅 ∈ V → (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1𝑅)))
453, 44pm2.61i 182 . 2 (+g‘(Poly1‘( I ‘𝑅))) = (+g‘(Poly1𝑅))
4645eqcomi 2745 1 (+g‘(Poly1𝑅)) = (+g‘(Poly1‘( I ‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wtru 1541  wcel 2109  wne 2933  Vcvv 3464  c0 4313  {csn 4606   I cid 5552   × cxp 5657  cres 5661  Oncon0 6357  wf 6532  cfv 6536  (class class class)co 7410  f cof 7674  1oc1o 8478  m cmap 8845  0cc0 11134  0cn0 12506  ndxcnx 17217  Basecbs 17233  +gcplusg 17276   mPwSer cmps 21869   mPoly cmpl 21871  Poly1cpl1 22117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-tset 17295  df-ple 17296  df-psr 21874  df-mpl 21876  df-opsr 21878  df-psr1 22120  df-ply1 22122
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator