Step | Hyp | Ref
| Expression |
1 | | fvi 6967 |
. . . . 5
β’ (π
β V β ( I
βπ
) = π
) |
2 | 1 | fveq2d 6895 |
. . . 4
β’ (π
β V β
(Poly1β( I βπ
)) = (Poly1βπ
)) |
3 | 2 | fveq2d 6895 |
. . 3
β’ (π
β V β
(+gβ(Poly1β( I βπ
))) =
(+gβ(Poly1βπ
))) |
4 | | eqid 2731 |
. . . . . 6
β’
(Poly1ββ
) =
(Poly1ββ
) |
5 | | eqid 2731 |
. . . . . 6
β’
(1o mPoly β
) = (1o mPoly
β
) |
6 | | eqid 2731 |
. . . . . 6
β’
(+gβ(Poly1ββ
)) =
(+gβ(Poly1ββ
)) |
7 | 4, 5, 6 | ply1plusg 21967 |
. . . . 5
β’
(+gβ(Poly1ββ
)) =
(+gβ(1o mPoly β
)) |
8 | | eqid 2731 |
. . . . . . 7
β’
(1o mPwSer β
) = (1o mPwSer
β
) |
9 | | eqid 2731 |
. . . . . . 7
β’
(+gβ(1o mPoly β
)) =
(+gβ(1o mPoly β
)) |
10 | 5, 8, 9 | mplplusg 21786 |
. . . . . 6
β’
(+gβ(1o mPoly β
)) =
(+gβ(1o mPwSer β
)) |
11 | | base0 17154 |
. . . . . . . . . 10
β’ β
=
(Baseββ
) |
12 | | psr1baslem 21929 |
. . . . . . . . . 10
β’
(β0 βm 1o) = {π β (β0
βm 1o) β£ (β‘π β β) β
Fin} |
13 | | eqid 2731 |
. . . . . . . . . 10
β’
(Baseβ(1o mPwSer β
)) = (Baseβ(1o
mPwSer β
)) |
14 | | 1on 8482 |
. . . . . . . . . . 11
β’
1o β On |
15 | 14 | a1i 11 |
. . . . . . . . . 10
β’ (β€
β 1o β On) |
16 | 8, 11, 12, 13, 15 | psrbas 21717 |
. . . . . . . . 9
β’ (β€
β (Baseβ(1o mPwSer β
)) = (β
βm (β0 βm
1o))) |
17 | 16 | mptru 1547 |
. . . . . . . 8
β’
(Baseβ(1o mPwSer β
)) = (β
βm (β0 βm
1o)) |
18 | | 0nn0 12492 |
. . . . . . . . . . 11
β’ 0 β
β0 |
19 | 18 | fconst6 6781 |
. . . . . . . . . 10
β’
(1o Γ
{0}):1oβΆβ0 |
20 | | nn0ex 12483 |
. . . . . . . . . . 11
β’
β0 β V |
21 | | 1oex 8480 |
. . . . . . . . . . 11
β’
1o β V |
22 | 20, 21 | elmap 8869 |
. . . . . . . . . 10
β’
((1o Γ {0}) β (β0
βm 1o) β (1o Γ
{0}):1oβΆβ0) |
23 | 19, 22 | mpbir 230 |
. . . . . . . . 9
β’
(1o Γ {0}) β (β0
βm 1o) |
24 | | ne0i 4334 |
. . . . . . . . 9
β’
((1o Γ {0}) β (β0
βm 1o) β (β0
βm 1o) β β
) |
25 | | map0b 8881 |
. . . . . . . . 9
β’
((β0 βm 1o) β β
β (β
βm (β0 βm
1o)) = β
) |
26 | 23, 24, 25 | mp2b 10 |
. . . . . . . 8
β’ (β
βm (β0 βm 1o)) =
β
|
27 | 17, 26 | eqtr2i 2760 |
. . . . . . 7
β’ β
=
(Baseβ(1o mPwSer β
)) |
28 | | eqid 2731 |
. . . . . . 7
β’
(+gββ
) =
(+gββ
) |
29 | | eqid 2731 |
. . . . . . 7
β’
(+gβ(1o mPwSer β
)) =
(+gβ(1o mPwSer β
)) |
30 | 8, 27, 28, 29 | psrplusg 21720 |
. . . . . 6
β’
(+gβ(1o mPwSer β
)) = (
βf (+gββ
) βΎ (β
Γ
β
)) |
31 | | xp0 6157 |
. . . . . . 7
β’ (β
Γ β
) = β
|
32 | 31 | reseq2i 5978 |
. . . . . 6
β’ (
βf (+gββ
) βΎ (β
Γ
β
)) = ( βf (+gββ
) βΎ
β
) |
33 | 10, 30, 32 | 3eqtri 2763 |
. . . . 5
β’
(+gβ(1o mPoly β
)) = (
βf (+gββ
) βΎ
β
) |
34 | | res0 5985 |
. . . . . 6
β’ (
βf (+gββ
) βΎ β
) =
β
|
35 | | plusgid 17229 |
. . . . . . 7
β’
+g = Slot (+gβndx) |
36 | 35 | str0 17127 |
. . . . . 6
β’ β
=
(+gββ
) |
37 | 34, 36 | eqtri 2759 |
. . . . 5
β’ (
βf (+gββ
) βΎ β
) =
(+gββ
) |
38 | 7, 33, 37 | 3eqtri 2763 |
. . . 4
β’
(+gβ(Poly1ββ
)) =
(+gββ
) |
39 | | fvprc 6883 |
. . . . . 6
β’ (Β¬
π
β V β ( I
βπ
) =
β
) |
40 | 39 | fveq2d 6895 |
. . . . 5
β’ (Β¬
π
β V β
(Poly1β( I βπ
)) =
(Poly1ββ
)) |
41 | 40 | fveq2d 6895 |
. . . 4
β’ (Β¬
π
β V β
(+gβ(Poly1β( I βπ
))) =
(+gβ(Poly1ββ
))) |
42 | | fvprc 6883 |
. . . . 5
β’ (Β¬
π
β V β
(Poly1βπ
)
= β
) |
43 | 42 | fveq2d 6895 |
. . . 4
β’ (Β¬
π
β V β
(+gβ(Poly1βπ
)) =
(+gββ
)) |
44 | 38, 41, 43 | 3eqtr4a 2797 |
. . 3
β’ (Β¬
π
β V β
(+gβ(Poly1β( I βπ
))) =
(+gβ(Poly1βπ
))) |
45 | 3, 44 | pm2.61i 182 |
. 2
β’
(+gβ(Poly1β( I βπ
))) =
(+gβ(Poly1βπ
)) |
46 | 45 | eqcomi 2740 |
1
β’
(+gβ(Poly1βπ
)) =
(+gβ(Poly1β( I βπ
))) |