| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2729 |
. 2
⊢ (𝐸 evalSub1 𝐹) = (𝐸 evalSub1 𝐹) |
| 2 | | eqid 2729 |
. 2
⊢
(0g‘(Poly1‘𝐸)) =
(0g‘(Poly1‘𝐸)) |
| 3 | | extdgfialglem1.2 |
. 2
⊢ 𝑍 = (0g‘𝐸) |
| 4 | | extdgfialg.e |
. 2
⊢ (𝜑 → 𝐸 ∈ Field) |
| 5 | | extdgfialg.f |
. 2
⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
| 6 | | extdgfialg.b |
. 2
⊢ 𝐵 = (Base‘𝐸) |
| 7 | | eqid 2729 |
. . . 4
⊢
(Base‘(Poly1‘(𝐸 ↾s 𝐹))) =
(Base‘(Poly1‘(𝐸 ↾s 𝐹))) |
| 8 | | eqid 2729 |
. . . 4
⊢
(0g‘(Poly1‘(𝐸 ↾s 𝐹))) =
(0g‘(Poly1‘(𝐸 ↾s 𝐹))) |
| 9 | | sdrgsubrg 20695 |
. . . . . . . 8
⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸)) |
| 10 | 5, 9 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
| 11 | | eqid 2729 |
. . . . . . . 8
⊢ (𝐸 ↾s 𝐹) = (𝐸 ↾s 𝐹) |
| 12 | 11 | subrgring 20478 |
. . . . . . 7
⊢ (𝐹 ∈ (SubRing‘𝐸) → (𝐸 ↾s 𝐹) ∈ Ring) |
| 13 | 10, 12 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ Ring) |
| 14 | | eqid 2729 |
. . . . . . 7
⊢
(Poly1‘(𝐸 ↾s 𝐹)) = (Poly1‘(𝐸 ↾s 𝐹)) |
| 15 | 14 | ply1ring 22149 |
. . . . . 6
⊢ ((𝐸 ↾s 𝐹) ∈ Ring →
(Poly1‘(𝐸
↾s 𝐹))
∈ Ring) |
| 16 | 13, 15 | syl 17 |
. . . . 5
⊢ (𝜑 →
(Poly1‘(𝐸
↾s 𝐹))
∈ Ring) |
| 17 | 16 | ringcmnd 20188 |
. . . 4
⊢ (𝜑 →
(Poly1‘(𝐸
↾s 𝐹))
∈ CMnd) |
| 18 | | fzfid 13899 |
. . . 4
⊢ (𝜑 → (0...𝐷) ∈ Fin) |
| 19 | | eqid 2729 |
. . . . . 6
⊢
(Scalar‘(Poly1‘(𝐸 ↾s 𝐹))) =
(Scalar‘(Poly1‘(𝐸 ↾s 𝐹))) |
| 20 | | eqid 2729 |
. . . . . 6
⊢ (
·𝑠 ‘(Poly1‘(𝐸 ↾s 𝐹))) = (
·𝑠 ‘(Poly1‘(𝐸 ↾s 𝐹))) |
| 21 | | eqid 2729 |
. . . . . 6
⊢
(Base‘(Scalar‘(Poly1‘(𝐸 ↾s 𝐹)))) =
(Base‘(Scalar‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 22 | 14 | ply1lmod 22153 |
. . . . . . . 8
⊢ ((𝐸 ↾s 𝐹) ∈ Ring →
(Poly1‘(𝐸
↾s 𝐹))
∈ LMod) |
| 23 | 13, 22 | syl 17 |
. . . . . . 7
⊢ (𝜑 →
(Poly1‘(𝐸
↾s 𝐹))
∈ LMod) |
| 24 | 23 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝐷)) → (Poly1‘(𝐸 ↾s 𝐹)) ∈ LMod) |
| 25 | | extdgfialglem2.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐴:(0...𝐷)⟶𝐹) |
| 26 | 25 | ffvelcdmda 7022 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝐷)) → (𝐴‘𝑛) ∈ 𝐹) |
| 27 | 6 | sdrgss 20697 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ⊆ 𝐵) |
| 28 | 5, 27 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ⊆ 𝐵) |
| 29 | 11, 6 | ressbas2 17168 |
. . . . . . . . . 10
⊢ (𝐹 ⊆ 𝐵 → 𝐹 = (Base‘(𝐸 ↾s 𝐹))) |
| 30 | 28, 29 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 = (Base‘(𝐸 ↾s 𝐹))) |
| 31 | | ovex 7386 |
. . . . . . . . . . 11
⊢ (𝐸 ↾s 𝐹) ∈ V |
| 32 | 14 | ply1sca 22154 |
. . . . . . . . . . 11
⊢ ((𝐸 ↾s 𝐹) ∈ V → (𝐸 ↾s 𝐹) =
(Scalar‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 33 | 31, 32 | ax-mp 5 |
. . . . . . . . . 10
⊢ (𝐸 ↾s 𝐹) =
(Scalar‘(Poly1‘(𝐸 ↾s 𝐹))) |
| 34 | 33 | fveq2i 6829 |
. . . . . . . . 9
⊢
(Base‘(𝐸
↾s 𝐹)) =
(Base‘(Scalar‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 35 | 30, 34 | eqtr2di 2781 |
. . . . . . . 8
⊢ (𝜑 →
(Base‘(Scalar‘(Poly1‘(𝐸 ↾s 𝐹)))) = 𝐹) |
| 36 | 35 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝐷)) →
(Base‘(Scalar‘(Poly1‘(𝐸 ↾s 𝐹)))) = 𝐹) |
| 37 | 26, 36 | eleqtrrd 2831 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝐷)) → (𝐴‘𝑛) ∈
(Base‘(Scalar‘(Poly1‘(𝐸 ↾s 𝐹))))) |
| 38 | | eqid 2729 |
. . . . . . . 8
⊢
(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))) =
(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))) |
| 39 | 38, 7 | mgpbas 20049 |
. . . . . . 7
⊢
(Base‘(Poly1‘(𝐸 ↾s 𝐹))) =
(Base‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 40 | | eqid 2729 |
. . . . . . 7
⊢
(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹)))) =
(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 41 | 38 | ringmgp 20143 |
. . . . . . . . 9
⊢
((Poly1‘(𝐸 ↾s 𝐹)) ∈ Ring →
(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))) ∈ Mnd) |
| 42 | 16, 41 | syl 17 |
. . . . . . . 8
⊢ (𝜑 →
(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))) ∈ Mnd) |
| 43 | 42 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝐷)) →
(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))) ∈ Mnd) |
| 44 | | fz0ssnn0 13544 |
. . . . . . . . 9
⊢
(0...𝐷) ⊆
ℕ0 |
| 45 | 44 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (0...𝐷) ⊆
ℕ0) |
| 46 | 45 | sselda 3937 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝐷)) → 𝑛 ∈ ℕ0) |
| 47 | | eqid 2729 |
. . . . . . . . . 10
⊢
(var1‘(𝐸 ↾s 𝐹)) = (var1‘(𝐸 ↾s 𝐹)) |
| 48 | 47, 14, 7 | vr1cl 22119 |
. . . . . . . . 9
⊢ ((𝐸 ↾s 𝐹) ∈ Ring →
(var1‘(𝐸
↾s 𝐹))
∈ (Base‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 49 | 13, 48 | syl 17 |
. . . . . . . 8
⊢ (𝜑 →
(var1‘(𝐸
↾s 𝐹))
∈ (Base‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 50 | 49 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝐷)) → (var1‘(𝐸 ↾s 𝐹)) ∈
(Base‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 51 | 39, 40, 43, 46, 50 | mulgnn0cld 18993 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝐷)) → (𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹))) ∈ (Base‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 52 | 7, 19, 20, 21, 24, 37, 51 | lmodvscld 20801 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝐷)) → ((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))) ∈ (Base‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 53 | 52 | fmpttd 7053 |
. . . 4
⊢ (𝜑 → (𝑛 ∈ (0...𝐷) ↦ ((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹))))):(0...𝐷)⟶(Base‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 54 | | eqid 2729 |
. . . . 5
⊢ (𝑛 ∈ (0...𝐷) ↦ ((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹))))) = (𝑛
∈ (0...𝐷) ↦ ((𝐴‘𝑛)(
·𝑠 ‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹))))) |
| 55 | | fvexd 6841 |
. . . . 5
⊢ (𝜑 →
(0g‘(Poly1‘(𝐸 ↾s 𝐹))) ∈ V) |
| 56 | 54, 18, 52, 55 | fsuppmptdm 9285 |
. . . 4
⊢ (𝜑 → (𝑛 ∈ (0...𝐷) ↦ ((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹))))) finSupp
(0g‘(Poly1‘(𝐸
↾s 𝐹)))) |
| 57 | 7, 8, 17, 18, 53, 56 | gsumcl 19813 |
. . 3
⊢ (𝜑 →
((Poly1‘(𝐸
↾s 𝐹))
Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))) ∈ (Base‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 58 | 4 | fldcrngd 20646 |
. . . 4
⊢ (𝜑 → 𝐸 ∈ CRing) |
| 59 | 1, 14, 7, 58, 10 | evls1dm 33515 |
. . 3
⊢ (𝜑 → dom (𝐸 evalSub1 𝐹) =
(Base‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 60 | 57, 59 | eleqtrrd 2831 |
. 2
⊢ (𝜑 →
((Poly1‘(𝐸
↾s 𝐹))
Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))) ∈ dom (𝐸 evalSub1 𝐹)) |
| 61 | | extdgfialglem2.4 |
. . 3
⊢ (𝜑 → 𝐴 ≠ ((0...𝐷) × {𝑍})) |
| 62 | | eqid 2729 |
. . . . . 6
⊢
(Base‘(𝐸
↾s 𝐹)) =
(Base‘(𝐸
↾s 𝐹)) |
| 63 | | eqid 2729 |
. . . . . 6
⊢
(0g‘(𝐸 ↾s 𝐹)) = (0g‘(𝐸 ↾s 𝐹)) |
| 64 | 25 | ffvelcdmda 7022 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (0...𝐷)) → (𝐴‘𝑚) ∈ 𝐹) |
| 65 | 64 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 ∈ (0...𝐷)) → (𝐴‘𝑚) ∈ 𝐹) |
| 66 | 30 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 ∈ (0...𝐷)) → 𝐹 = (Base‘(𝐸 ↾s 𝐹))) |
| 67 | 65, 66 | eleqtrd 2830 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑚 ∈ (0...𝐷)) → (𝐴‘𝑚) ∈ (Base‘(𝐸 ↾s 𝐹))) |
| 68 | | subrgsubg 20481 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸)) |
| 69 | 10, 68 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ (SubGrp‘𝐸)) |
| 70 | 3 | subg0cl 19032 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (SubGrp‘𝐸) → 𝑍 ∈ 𝐹) |
| 71 | 69, 70 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ 𝐹) |
| 72 | 71, 30 | eleqtrd 2830 |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ (Base‘(𝐸 ↾s 𝐹))) |
| 73 | 72 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ¬
𝑚 ∈ (0...𝐷)) → 𝑍 ∈ (Base‘(𝐸 ↾s 𝐹))) |
| 74 | 67, 73 | ifclda 4514 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → if(𝑚 ∈ (0...𝐷), (𝐴‘𝑚), 𝑍) ∈ (Base‘(𝐸 ↾s 𝐹))) |
| 75 | 74 | ralrimiva 3121 |
. . . . . 6
⊢ (𝜑 → ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴‘𝑚), 𝑍) ∈ (Base‘(𝐸 ↾s 𝐹))) |
| 76 | | eqid 2729 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ0
↦ if(𝑚 ∈
(0...𝐷), (𝐴‘𝑚), 𝑍)) = (𝑚 ∈ ℕ0 ↦ if(𝑚 ∈ (0...𝐷), (𝐴‘𝑚), 𝑍)) |
| 77 | | nn0ex 12409 |
. . . . . . . . 9
⊢
ℕ0 ∈ V |
| 78 | 77 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ℕ0 ∈
V) |
| 79 | 76, 78, 18, 64, 71 | mptiffisupp 32654 |
. . . . . . 7
⊢ (𝜑 → (𝑚 ∈ ℕ0 ↦ if(𝑚 ∈ (0...𝐷), (𝐴‘𝑚), 𝑍)) finSupp 𝑍) |
| 80 | 58 | crngringd 20150 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∈ Ring) |
| 81 | 80 | ringcmnd 20188 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈ CMnd) |
| 82 | 81 | cmnmndd 19702 |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ Mnd) |
| 83 | 11, 6, 3 | ress0g 18655 |
. . . . . . . 8
⊢ ((𝐸 ∈ Mnd ∧ 𝑍 ∈ 𝐹 ∧ 𝐹 ⊆ 𝐵) → 𝑍 = (0g‘(𝐸 ↾s 𝐹))) |
| 84 | 82, 71, 28, 83 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 → 𝑍 = (0g‘(𝐸 ↾s 𝐹))) |
| 85 | 79, 84 | breqtrd 5121 |
. . . . . 6
⊢ (𝜑 → (𝑚 ∈ ℕ0 ↦ if(𝑚 ∈ (0...𝐷), (𝐴‘𝑚), 𝑍)) finSupp (0g‘(𝐸 ↾s 𝐹))) |
| 86 | 72 | ralrimivw 3125 |
. . . . . 6
⊢ (𝜑 → ∀𝑚 ∈ ℕ0 𝑍 ∈ (Base‘(𝐸 ↾s 𝐹))) |
| 87 | | fconstmpt 5685 |
. . . . . . . 8
⊢
(ℕ0 × {𝑍}) = (𝑚 ∈ ℕ0 ↦ 𝑍) |
| 88 | 78, 71 | fczfsuppd 9295 |
. . . . . . . 8
⊢ (𝜑 → (ℕ0
× {𝑍}) finSupp 𝑍) |
| 89 | 87, 88 | eqbrtrrid 5131 |
. . . . . . 7
⊢ (𝜑 → (𝑚 ∈ ℕ0 ↦ 𝑍) finSupp 𝑍) |
| 90 | 89, 84 | breqtrd 5121 |
. . . . . 6
⊢ (𝜑 → (𝑚 ∈ ℕ0 ↦ 𝑍) finSupp
(0g‘(𝐸
↾s 𝐹))) |
| 91 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (ℕ0 ∖
(0...𝐷))) → 𝑚 ∈ (ℕ0
∖ (0...𝐷))) |
| 92 | 91 | eldifbd 3918 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (ℕ0 ∖
(0...𝐷))) → ¬
𝑚 ∈ (0...𝐷)) |
| 93 | 92 | iffalsed 4489 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (ℕ0 ∖
(0...𝐷))) → if(𝑚 ∈ (0...𝐷), (𝐴‘𝑚), 𝑍) = 𝑍) |
| 94 | 84 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (ℕ0 ∖
(0...𝐷))) → 𝑍 = (0g‘(𝐸 ↾s 𝐹))) |
| 95 | 93, 94 | eqtrd 2764 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℕ0 ∖
(0...𝐷))) → if(𝑚 ∈ (0...𝐷), (𝐴‘𝑚), 𝑍) = (0g‘(𝐸 ↾s 𝐹))) |
| 96 | 95 | oveq1d 7368 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℕ0 ∖
(0...𝐷))) → (if(𝑚 ∈ (0...𝐷), (𝐴‘𝑚), 𝑍)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))) = ((0g‘(𝐸 ↾s 𝐹))( ·𝑠
‘(Poly1‘(𝐸
↾s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹))))) |
| 97 | 23 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℕ0 ∖
(0...𝐷))) →
(Poly1‘(𝐸
↾s 𝐹))
∈ LMod) |
| 98 | 42 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (ℕ0 ∖
(0...𝐷))) →
(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))) ∈ Mnd) |
| 99 | 91 | eldifad 3917 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (ℕ0 ∖
(0...𝐷))) → 𝑚 ∈
ℕ0) |
| 100 | 49 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (ℕ0 ∖
(0...𝐷))) →
(var1‘(𝐸
↾s 𝐹))
∈ (Base‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 101 | 39, 40, 98, 99, 100 | mulgnn0cld 18993 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (ℕ0 ∖
(0...𝐷))) → (𝑚(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹))) ∈ (Base‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 102 | 7, 33, 20, 63, 8 | lmod0vs 20817 |
. . . . . . . . . 10
⊢
(((Poly1‘(𝐸 ↾s 𝐹)) ∈ LMod ∧ (𝑚(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹))) ∈ (Base‘(Poly1‘(𝐸 ↾s 𝐹)))) → ((0g‘(𝐸 ↾s 𝐹))( ·𝑠
‘(Poly1‘(𝐸
↾s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))) = (0g‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 103 | 97, 101, 102 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (ℕ0 ∖
(0...𝐷))) →
((0g‘(𝐸
↾s 𝐹))(
·𝑠 ‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))) = (0g‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 104 | 96, 103 | eqtrd 2764 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (ℕ0 ∖
(0...𝐷))) → (if(𝑚 ∈ (0...𝐷), (𝐴‘𝑚), 𝑍)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))) = (0g‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 105 | 23 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
(Poly1‘(𝐸
↾s 𝐹))
∈ LMod) |
| 106 | 42 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))) ∈ Mnd) |
| 107 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈
ℕ0) |
| 108 | 49 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
(var1‘(𝐸
↾s 𝐹))
∈ (Base‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 109 | 39, 40, 106, 107, 108 | mulgnn0cld 18993 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝑚(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹))) ∈ (Base‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 110 | 7, 33, 20, 62, 105, 74, 109 | lmodvscld 20801 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (if(𝑚 ∈ (0...𝐷), (𝐴‘𝑚), 𝑍)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))) ∈ (Base‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 111 | 7, 8, 17, 78, 104, 18, 110, 45 | gsummptres2 33025 |
. . . . . . 7
⊢ (𝜑 →
((Poly1‘(𝐸
↾s 𝐹))
Σg (𝑚 ∈ ℕ0 ↦ (if(𝑚 ∈ (0...𝐷), (𝐴‘𝑚), 𝑍)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))) = ((Poly1‘(𝐸 ↾s 𝐹)) Σg (𝑚 ∈ (0...𝐷) ↦ (if(𝑚 ∈ (0...𝐷), (𝐴‘𝑚),
𝑍)( ·𝑠
‘(Poly1‘(𝐸
↾s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹))))))) |
| 112 | | eleq1w 2811 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → (𝑚 ∈ (0...𝐷) ↔ 𝑛 ∈ (0...𝐷))) |
| 113 | | fveq2 6826 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → (𝐴‘𝑚) = (𝐴‘𝑛)) |
| 114 | 112, 113 | ifbieq1d 4503 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → if(𝑚 ∈ (0...𝐷), (𝐴‘𝑚), 𝑍) = if(𝑛 ∈ (0...𝐷), (𝐴‘𝑛), 𝑍)) |
| 115 | | oveq1 7360 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → (𝑚(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹))) = (𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))) |
| 116 | 114, 115 | oveq12d 7371 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → (if(𝑚 ∈ (0...𝐷), (𝐴‘𝑚), 𝑍)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))) = (if(𝑛
∈ (0...𝐷), (𝐴‘𝑛),
𝑍)( ·𝑠
‘(Poly1‘(𝐸
↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹))))) |
| 117 | 116 | cbvmptv 5199 |
. . . . . . . . 9
⊢ (𝑚 ∈ (0...𝐷) ↦ (if(𝑚 ∈ (0...𝐷), (𝐴‘𝑚), 𝑍)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹))))) = (𝑛
∈ (0...𝐷) ↦ (if(𝑛 ∈ (0...𝐷), (𝐴‘𝑛),
𝑍)( ·𝑠
‘(Poly1‘(𝐸
↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹))))) |
| 118 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝐷)) → 𝑛 ∈ (0...𝐷)) |
| 119 | 118 | iftrued 4486 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝐷)) → if(𝑛 ∈ (0...𝐷), (𝐴‘𝑛), 𝑍) = (𝐴‘𝑛)) |
| 120 | 119 | oveq1d 7368 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝐷)) → (if(𝑛 ∈ (0...𝐷), (𝐴‘𝑛), 𝑍)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))) = ((𝐴‘𝑛)(
·𝑠 ‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹))))) |
| 121 | 120 | mpteq2dva 5188 |
. . . . . . . . 9
⊢ (𝜑 → (𝑛 ∈ (0...𝐷) ↦ (if(𝑛 ∈ (0...𝐷), (𝐴‘𝑛), 𝑍)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹))))) = (𝑛
∈ (0...𝐷) ↦ ((𝐴‘𝑛)(
·𝑠 ‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))) |
| 122 | 117, 121 | eqtrid 2776 |
. . . . . . . 8
⊢ (𝜑 → (𝑚 ∈ (0...𝐷) ↦ (if(𝑚 ∈ (0...𝐷), (𝐴‘𝑚), 𝑍)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹))))) = (𝑛
∈ (0...𝐷) ↦ ((𝐴‘𝑛)(
·𝑠 ‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))) |
| 123 | 122 | oveq2d 7369 |
. . . . . . 7
⊢ (𝜑 →
((Poly1‘(𝐸
↾s 𝐹))
Σg (𝑚 ∈ (0...𝐷) ↦ (if(𝑚 ∈ (0...𝐷), (𝐴‘𝑚), 𝑍)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))) = ((Poly1‘(𝐸 ↾s 𝐹)) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐴‘𝑛)(
·𝑠 ‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹))))))) |
| 124 | 111, 123 | eqtr2d 2765 |
. . . . . 6
⊢ (𝜑 →
((Poly1‘(𝐸
↾s 𝐹))
Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))) = ((Poly1‘(𝐸 ↾s 𝐹)) Σg (𝑚 ∈ ℕ0 ↦ (if(𝑚 ∈ (0...𝐷), (𝐴‘𝑚),
𝑍)( ·𝑠
‘(Poly1‘(𝐸
↾s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹))))))) |
| 125 | 17 | cmnmndd 19702 |
. . . . . . . 8
⊢ (𝜑 →
(Poly1‘(𝐸
↾s 𝐹))
∈ Mnd) |
| 126 | 8 | gsumz 18729 |
. . . . . . . 8
⊢
(((Poly1‘(𝐸 ↾s 𝐹)) ∈ Mnd ∧ ℕ0
∈ V) → ((Poly1‘(𝐸 ↾s 𝐹)) Σg (𝑚 ∈ ℕ0
↦ (0g‘(Poly1‘(𝐸 ↾s 𝐹))))) =
(0g‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 127 | 125, 78, 126 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 →
((Poly1‘(𝐸
↾s 𝐹))
Σg (𝑚 ∈ ℕ0 ↦
(0g‘(Poly1‘(𝐸 ↾s 𝐹))))) =
(0g‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 128 | 84 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → 𝑍 = (0g‘(𝐸 ↾s 𝐹))) |
| 129 | 128 | oveq1d 7368 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝑍(
·𝑠 ‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))) = ((0g‘(𝐸 ↾s 𝐹))( ·𝑠
‘(Poly1‘(𝐸
↾s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹))))) |
| 130 | 105, 109,
102 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
((0g‘(𝐸
↾s 𝐹))(
·𝑠 ‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))) = (0g‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 131 | 129, 130 | eqtrd 2764 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝑍(
·𝑠 ‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))) = (0g‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 132 | 131 | mpteq2dva 5188 |
. . . . . . . 8
⊢ (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝑍(
·𝑠 ‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹))))) = (𝑚
∈ ℕ0 ↦ (0g‘(Poly1‘(𝐸 ↾s 𝐹))))) |
| 133 | 132 | oveq2d 7369 |
. . . . . . 7
⊢ (𝜑 →
((Poly1‘(𝐸
↾s 𝐹))
Σg (𝑚 ∈ ℕ0 ↦ (𝑍(
·𝑠 ‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))) = ((Poly1‘(𝐸 ↾s 𝐹)) Σg (𝑚 ∈ ℕ0 ↦
(0g‘(Poly1‘(𝐸
↾s 𝐹)))))) |
| 134 | | eqid 2729 |
. . . . . . . 8
⊢
(Poly1‘𝐸) = (Poly1‘𝐸) |
| 135 | 134, 11, 14, 7, 10, 2 | ressply10g 33521 |
. . . . . . 7
⊢ (𝜑 →
(0g‘(Poly1‘𝐸)) =
(0g‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 136 | 127, 133,
135 | 3eqtr4rd 2775 |
. . . . . 6
⊢ (𝜑 →
(0g‘(Poly1‘𝐸)) = ((Poly1‘(𝐸 ↾s 𝐹)) Σg
(𝑚 ∈
ℕ0 ↦ (𝑍( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹))))))) |
| 137 | 14, 47, 40, 13, 62, 20, 63, 75, 85, 86, 90, 124, 136 | gsumply1eq 22213 |
. . . . 5
⊢ (𝜑 →
(((Poly1‘(𝐸 ↾s 𝐹)) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))) = (0g‘(Poly1‘𝐸)) ↔ ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴‘𝑚),
𝑍) = 𝑍)) |
| 138 | 25 | ffnd 6657 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 Fn (0...𝐷)) |
| 139 | 138 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴‘𝑚), 𝑍) = 𝑍) → 𝐴 Fn (0...𝐷)) |
| 140 | 119 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴‘𝑚), 𝑍) = 𝑍) ∧ 𝑛 ∈ (0...𝐷)) → if(𝑛 ∈ (0...𝐷), (𝐴‘𝑛), 𝑍) = (𝐴‘𝑛)) |
| 141 | 114 | eqeq1d 2731 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (if(𝑚 ∈ (0...𝐷), (𝐴‘𝑚), 𝑍) = 𝑍 ↔ if(𝑛 ∈ (0...𝐷), (𝐴‘𝑛), 𝑍) = 𝑍)) |
| 142 | | simplr 768 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴‘𝑚), 𝑍) = 𝑍) ∧ 𝑛 ∈ (0...𝐷)) → ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴‘𝑚), 𝑍) = 𝑍) |
| 143 | 44 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴‘𝑚), 𝑍) = 𝑍) → (0...𝐷) ⊆
ℕ0) |
| 144 | 143 | sselda 3937 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴‘𝑚), 𝑍) = 𝑍) ∧ 𝑛 ∈ (0...𝐷)) → 𝑛 ∈ ℕ0) |
| 145 | 141, 142,
144 | rspcdva 3580 |
. . . . . . . 8
⊢ (((𝜑 ∧ ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴‘𝑚), 𝑍) = 𝑍) ∧ 𝑛 ∈ (0...𝐷)) → if(𝑛 ∈ (0...𝐷), (𝐴‘𝑛), 𝑍) = 𝑍) |
| 146 | 140, 145 | eqtr3d 2766 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴‘𝑚), 𝑍) = 𝑍) ∧ 𝑛 ∈ (0...𝐷)) → (𝐴‘𝑛) = 𝑍) |
| 147 | 139, 146 | fconst7v 32584 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴‘𝑚), 𝑍) = 𝑍) → 𝐴 = ((0...𝐷) × {𝑍})) |
| 148 | 147 | ex 412 |
. . . . 5
⊢ (𝜑 → (∀𝑚 ∈ ℕ0
if(𝑚 ∈ (0...𝐷), (𝐴‘𝑚), 𝑍) = 𝑍 → 𝐴 = ((0...𝐷) × {𝑍}))) |
| 149 | 137, 148 | sylbid 240 |
. . . 4
⊢ (𝜑 →
(((Poly1‘(𝐸 ↾s 𝐹)) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))) = (0g‘(Poly1‘𝐸)) → 𝐴 = ((0...𝐷)
× {𝑍}))) |
| 150 | 149 | necon3d 2946 |
. . 3
⊢ (𝜑 → (𝐴 ≠ ((0...𝐷) × {𝑍}) → ((Poly1‘(𝐸 ↾s 𝐹)) Σg
(𝑛 ∈ (0...𝐷) ↦ ((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))) ≠ (0g‘(Poly1‘𝐸)))) |
| 151 | 61, 150 | mpd 15 |
. 2
⊢ (𝜑 →
((Poly1‘(𝐸
↾s 𝐹))
Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))) ≠ (0g‘(Poly1‘𝐸))) |
| 152 | | eqid 2729 |
. . . . 5
⊢ (𝐸 ↑s 𝐵) = (𝐸 ↑s 𝐵) |
| 153 | 1, 6, 14, 8, 11, 152, 7, 58, 10, 52, 45, 56 | evls1gsumadd 22228 |
. . . 4
⊢ (𝜑 → ((𝐸 evalSub1 𝐹)‘((Poly1‘(𝐸 ↾s 𝐹)) Σg
(𝑛 ∈ (0...𝐷) ↦ ((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹))))))) = ((𝐸 ↑s 𝐵) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)(
·𝑠 ‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))))) |
| 154 | 153 | fveq1d 6828 |
. . 3
⊢ (𝜑 → (((𝐸 evalSub1 𝐹)‘((Poly1‘(𝐸 ↾s 𝐹)) Σg
(𝑛 ∈ (0...𝐷) ↦ ((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))))‘𝑋) = (((𝐸
↑s 𝐵)
Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)(
·𝑠 ‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))))‘𝑋)) |
| 155 | 58 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝐷)) → 𝐸 ∈ CRing) |
| 156 | 10 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝐷)) → 𝐹 ∈ (SubRing‘𝐸)) |
| 157 | 1, 14, 7, 155, 156, 6, 52 | evls1fvf 33516 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝐷)) → ((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹))))):𝐵⟶𝐵) |
| 158 | 157 | feqmptd 6895 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝐷)) → ((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹))))) = (𝑥
∈ 𝐵 ↦ (((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)(
·𝑠 ‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑥))) |
| 159 | 158 | mpteq2dva 5188 |
. . . . . . 7
⊢ (𝜑 → (𝑛 ∈ (0...𝐷) ↦ ((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))) = (𝑛
∈ (0...𝐷) ↦ (𝑥 ∈ 𝐵
↦ (((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)(
·𝑠 ‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑥)))) |
| 160 | 159 | oveq2d 7369 |
. . . . . 6
⊢ (𝜑 → ((𝐸 ↑s 𝐵) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹))))))) = ((𝐸 ↑s 𝐵) Σg (𝑛 ∈ (0...𝐷) ↦ (𝑥
∈ 𝐵 ↦ (((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)(
·𝑠 ‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑥))))) |
| 161 | 160 | fveq1d 6828 |
. . . . 5
⊢ (𝜑 → (((𝐸 ↑s 𝐵) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))))‘𝑋) = (((𝐸
↑s 𝐵)
Σg (𝑛 ∈ (0...𝐷) ↦ (𝑥 ∈ 𝐵
↦ (((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)(
·𝑠 ‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑥))))‘𝑋)) |
| 162 | | eqid 2729 |
. . . . . . 7
⊢
(0g‘(𝐸 ↑s 𝐵)) = (0g‘(𝐸 ↑s 𝐵)) |
| 163 | 6 | fvexi 6840 |
. . . . . . . 8
⊢ 𝐵 ∈ V |
| 164 | 163 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ V) |
| 165 | 155 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (0...𝐷)) ∧ 𝑥 ∈ 𝐵) → 𝐸 ∈ CRing) |
| 166 | 156 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (0...𝐷)) ∧ 𝑥 ∈ 𝐵) → 𝐹 ∈ (SubRing‘𝐸)) |
| 167 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (0...𝐷)) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
| 168 | 52 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (0...𝐷)) ∧ 𝑥 ∈ 𝐵) → ((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))) ∈ (Base‘(Poly1‘(𝐸 ↾s 𝐹)))) |
| 169 | 1, 14, 6, 7, 165, 166, 167, 168 | evls1fvcl 22279 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ (0...𝐷)) ∧ 𝑥 ∈ 𝐵) → (((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑥) ∈ 𝐵) |
| 170 | 169 | an32s 652 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑛 ∈ (0...𝐷)) → (((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑥) ∈ 𝐵) |
| 171 | 170 | anasss 466 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑛 ∈ (0...𝐷))) → (((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑥) ∈ 𝐵) |
| 172 | | eqid 2729 |
. . . . . . . 8
⊢ (𝑛 ∈ (0...𝐷) ↦ (𝑥 ∈ 𝐵 ↦ (((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑥))) = (𝑛
∈ (0...𝐷) ↦ (𝑥 ∈ 𝐵
↦ (((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)(
·𝑠 ‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑥))) |
| 173 | 163 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝐷)) → 𝐵 ∈ V) |
| 174 | 173 | mptexd 7164 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝐷)) → (𝑥 ∈ 𝐵 ↦ (((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑥)) ∈ V) |
| 175 | | fvexd 6841 |
. . . . . . . 8
⊢ (𝜑 →
(0g‘(𝐸
↑s 𝐵)) ∈ V) |
| 176 | 172, 18, 174, 175 | fsuppmptdm 9285 |
. . . . . . 7
⊢ (𝜑 → (𝑛 ∈ (0...𝐷) ↦ (𝑥 ∈ 𝐵 ↦ (((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑥))) finSupp (0g‘(𝐸 ↑s 𝐵))) |
| 177 | 152, 6, 162, 164, 18, 81, 171, 176 | pwsgsum 19880 |
. . . . . 6
⊢ (𝜑 → ((𝐸 ↑s 𝐵) Σg (𝑛 ∈ (0...𝐷) ↦ (𝑥 ∈ 𝐵 ↦ (((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑥)))) = (𝑥
∈ 𝐵 ↦ (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)(
·𝑠 ‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑥))))) |
| 178 | 177 | fveq1d 6828 |
. . . . 5
⊢ (𝜑 → (((𝐸 ↑s 𝐵) Σg (𝑛 ∈ (0...𝐷) ↦ (𝑥 ∈ 𝐵 ↦ (((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑥))))‘𝑋)
= ((𝑥 ∈ 𝐵 ↦ (𝐸
Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)(
·𝑠 ‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑥))))‘𝑋)) |
| 179 | 161, 178 | eqtrd 2764 |
. . . 4
⊢ (𝜑 → (((𝐸 ↑s 𝐵) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))))‘𝑋) = ((𝑥
∈ 𝐵 ↦ (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)(
·𝑠 ‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑥))))‘𝑋)) |
| 180 | | fveq2 6826 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑥) = (((𝐸
evalSub1 𝐹)‘((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸
↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑋)) |
| 181 | 180 | mpteq2dv 5189 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑥)) = (𝑛
∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)(
·𝑠 ‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑋))) |
| 182 | 181 | oveq2d 7369 |
. . . . 5
⊢ (𝑥 = 𝑋 → (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑥))) = (𝐸
Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)(
·𝑠 ‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑋)))) |
| 183 | | eqidd 2730 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑥)))) = (𝑥
∈ 𝐵 ↦ (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)(
·𝑠 ‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑥))))) |
| 184 | | extdgfialglem1.4 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 185 | | ovexd 7388 |
. . . . 5
⊢ (𝜑 → (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑋))) ∈ V) |
| 186 | 182, 183,
184, 185 | fvmptd4 6958 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑥))))‘𝑋)
= (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)(
·𝑠 ‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑋)))) |
| 187 | | eqid 2729 |
. . . . . . . 8
⊢
(.g‘(mulGrp‘𝐸)) =
(.g‘(mulGrp‘𝐸)) |
| 188 | | extdgfialglem1.3 |
. . . . . . . 8
⊢ · =
(.r‘𝐸) |
| 189 | 184 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝐷)) → 𝑋 ∈ 𝐵) |
| 190 | 1, 6, 14, 11, 47, 40, 187, 20, 188, 155, 156, 26, 46, 189 | evls1monply1 33533 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝐷)) → (((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑋) = ((𝐴‘𝑛)
· (𝑛(.g‘(mulGrp‘𝐸))𝑋))) |
| 191 | 190 | mpteq2dva 5188 |
. . . . . 6
⊢ (𝜑 → (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑋)) = (𝑛
∈ (0...𝐷) ↦ ((𝐴‘𝑛)
· (𝑛(.g‘(mulGrp‘𝐸))𝑋)))) |
| 192 | | nfv 1914 |
. . . . . . . 8
⊢
Ⅎ𝑛𝜑 |
| 193 | | ovexd 7388 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝐷)) → (𝑛(.g‘(mulGrp‘((subringAlg
‘𝐸)‘𝐹)))𝑋) ∈ V) |
| 194 | | extdgfialglem1.r |
. . . . . . . 8
⊢ 𝐺 = (𝑛 ∈ (0...𝐷) ↦ (𝑛(.g‘(mulGrp‘((subringAlg
‘𝐸)‘𝐹)))𝑋)) |
| 195 | 192, 193,
194 | fnmptd 6627 |
. . . . . . 7
⊢ (𝜑 → 𝐺 Fn (0...𝐷)) |
| 196 | | inidm 4180 |
. . . . . . 7
⊢
((0...𝐷) ∩
(0...𝐷)) = (0...𝐷) |
| 197 | | eqidd 2730 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝐷)) → (𝐴‘𝑛) = (𝐴‘𝑛)) |
| 198 | 194 | fvmpt2 6945 |
. . . . . . . . 9
⊢ ((𝑛 ∈ (0...𝐷) ∧ (𝑛(.g‘(mulGrp‘((subringAlg
‘𝐸)‘𝐹)))𝑋) ∈ V) → (𝐺‘𝑛) = (𝑛(.g‘(mulGrp‘((subringAlg
‘𝐸)‘𝐹)))𝑋)) |
| 199 | 118, 193,
198 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝐷)) → (𝐺‘𝑛) = (𝑛(.g‘(mulGrp‘((subringAlg
‘𝐸)‘𝐹)))𝑋)) |
| 200 | | eqid 2729 |
. . . . . . . . . . 11
⊢
((subringAlg ‘𝐸)‘𝐹) = ((subringAlg ‘𝐸)‘𝐹) |
| 201 | 28, 6 | sseqtrdi 3978 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ⊆ (Base‘𝐸)) |
| 202 | 200, 80, 201 | srapwov 33574 |
. . . . . . . . . 10
⊢ (𝜑 →
(.g‘(mulGrp‘𝐸)) =
(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))) |
| 203 | 202 | oveqd 7370 |
. . . . . . . . 9
⊢ (𝜑 → (𝑛(.g‘(mulGrp‘𝐸))𝑋) = (𝑛(.g‘(mulGrp‘((subringAlg
‘𝐸)‘𝐹)))𝑋)) |
| 204 | 203 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝐷)) → (𝑛(.g‘(mulGrp‘𝐸))𝑋) = (𝑛(.g‘(mulGrp‘((subringAlg
‘𝐸)‘𝐹)))𝑋)) |
| 205 | 199, 204 | eqtr4d 2767 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (0...𝐷)) → (𝐺‘𝑛) = (𝑛(.g‘(mulGrp‘𝐸))𝑋)) |
| 206 | 138, 195,
18, 18, 196, 197, 205 | offval 7626 |
. . . . . 6
⊢ (𝜑 → (𝐴 ∘f · 𝐺) = (𝑛 ∈ (0...𝐷) ↦ ((𝐴‘𝑛) · (𝑛(.g‘(mulGrp‘𝐸))𝑋)))) |
| 207 | 191, 206 | eqtr4d 2767 |
. . . . 5
⊢ (𝜑 → (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑋)) = (𝐴
∘f ·
𝐺)) |
| 208 | 207 | oveq2d 7369 |
. . . 4
⊢ (𝜑 → (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))‘𝑋))) = (𝐸
Σg (𝐴
∘f ·
𝐺))) |
| 209 | 179, 186,
208 | 3eqtrd 2768 |
. . 3
⊢ (𝜑 → (((𝐸 ↑s 𝐵) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐸 evalSub1 𝐹)‘((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))))‘𝑋) = (𝐸
Σg (𝐴
∘f ·
𝐺))) |
| 210 | | extdgfialglem2.3 |
. . 3
⊢ (𝜑 → (𝐸 Σg (𝐴 ∘f · 𝐺)) = 𝑍) |
| 211 | 154, 209,
210 | 3eqtrd 2768 |
. 2
⊢ (𝜑 → (((𝐸 evalSub1 𝐹)‘((Poly1‘(𝐸 ↾s 𝐹)) Σg
(𝑛 ∈ (0...𝐷) ↦ ((𝐴‘𝑛)( ·𝑠
‘(Poly1‘(𝐸 ↾s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸 ↾s 𝐹))))(var1‘(𝐸 ↾s 𝐹)))))))‘𝑋) = 𝑍) |
| 212 | 1, 2, 3, 4, 5, 6, 60, 151, 211, 184 | irngnzply1lem 33676 |
1
⊢ (𝜑 → 𝑋 ∈ (𝐸 IntgRing 𝐹)) |