Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extdgfialglem2 Structured version   Visualization version   GIF version

Theorem extdgfialglem2 33698
Description: Lemma for extdgfialg 33699. (Contributed by Thierry Arnoux, 10-Jan-2026.)
Hypotheses
Ref Expression
extdgfialg.b 𝐵 = (Base‘𝐸)
extdgfialg.d 𝐷 = (dim‘((subringAlg ‘𝐸)‘𝐹))
extdgfialg.e (𝜑𝐸 ∈ Field)
extdgfialg.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
extdgfialg.1 (𝜑𝐷 ∈ ℕ0)
extdgfialglem1.2 𝑍 = (0g𝐸)
extdgfialglem1.3 · = (.r𝐸)
extdgfialglem1.r 𝐺 = (𝑛 ∈ (0...𝐷) ↦ (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋))
extdgfialglem1.4 (𝜑𝑋𝐵)
extdgfialglem2.1 (𝜑𝐴:(0...𝐷)⟶𝐹)
extdgfialglem2.2 (𝜑𝐴 finSupp 𝑍)
extdgfialglem2.3 (𝜑 → (𝐸 Σg (𝐴f · 𝐺)) = 𝑍)
extdgfialglem2.4 (𝜑𝐴 ≠ ((0...𝐷) × {𝑍}))
Assertion
Ref Expression
extdgfialglem2 (𝜑𝑋 ∈ (𝐸 IntgRing 𝐹))
Distinct variable groups:   · ,𝑛   𝐴,𝑛   𝐵,𝑛   𝐷,𝑛   𝑛,𝐸   𝑛,𝐹   𝑛,𝐺   𝑛,𝑋   𝑛,𝑍   𝜑,𝑛

Proof of Theorem extdgfialglem2
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . 2 (𝐸 evalSub1 𝐹) = (𝐸 evalSub1 𝐹)
2 eqid 2731 . 2 (0g‘(Poly1𝐸)) = (0g‘(Poly1𝐸))
3 extdgfialglem1.2 . 2 𝑍 = (0g𝐸)
4 extdgfialg.e . 2 (𝜑𝐸 ∈ Field)
5 extdgfialg.f . 2 (𝜑𝐹 ∈ (SubDRing‘𝐸))
6 extdgfialg.b . 2 𝐵 = (Base‘𝐸)
7 eqid 2731 . . . 4 (Base‘(Poly1‘(𝐸s 𝐹))) = (Base‘(Poly1‘(𝐸s 𝐹)))
8 eqid 2731 . . . 4 (0g‘(Poly1‘(𝐸s 𝐹))) = (0g‘(Poly1‘(𝐸s 𝐹)))
9 sdrgsubrg 20701 . . . . . . . 8 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
105, 9syl 17 . . . . . . 7 (𝜑𝐹 ∈ (SubRing‘𝐸))
11 eqid 2731 . . . . . . . 8 (𝐸s 𝐹) = (𝐸s 𝐹)
1211subrgring 20484 . . . . . . 7 (𝐹 ∈ (SubRing‘𝐸) → (𝐸s 𝐹) ∈ Ring)
1310, 12syl 17 . . . . . 6 (𝜑 → (𝐸s 𝐹) ∈ Ring)
14 eqid 2731 . . . . . . 7 (Poly1‘(𝐸s 𝐹)) = (Poly1‘(𝐸s 𝐹))
1514ply1ring 22155 . . . . . 6 ((𝐸s 𝐹) ∈ Ring → (Poly1‘(𝐸s 𝐹)) ∈ Ring)
1613, 15syl 17 . . . . 5 (𝜑 → (Poly1‘(𝐸s 𝐹)) ∈ Ring)
1716ringcmnd 20197 . . . 4 (𝜑 → (Poly1‘(𝐸s 𝐹)) ∈ CMnd)
18 fzfid 13875 . . . 4 (𝜑 → (0...𝐷) ∈ Fin)
19 eqid 2731 . . . . . 6 (Scalar‘(Poly1‘(𝐸s 𝐹))) = (Scalar‘(Poly1‘(𝐸s 𝐹)))
20 eqid 2731 . . . . . 6 ( ·𝑠 ‘(Poly1‘(𝐸s 𝐹))) = ( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))
21 eqid 2731 . . . . . 6 (Base‘(Scalar‘(Poly1‘(𝐸s 𝐹)))) = (Base‘(Scalar‘(Poly1‘(𝐸s 𝐹))))
2214ply1lmod 22159 . . . . . . . 8 ((𝐸s 𝐹) ∈ Ring → (Poly1‘(𝐸s 𝐹)) ∈ LMod)
2313, 22syl 17 . . . . . . 7 (𝜑 → (Poly1‘(𝐸s 𝐹)) ∈ LMod)
2423adantr 480 . . . . . 6 ((𝜑𝑛 ∈ (0...𝐷)) → (Poly1‘(𝐸s 𝐹)) ∈ LMod)
25 extdgfialglem2.1 . . . . . . . 8 (𝜑𝐴:(0...𝐷)⟶𝐹)
2625ffvelcdmda 7012 . . . . . . 7 ((𝜑𝑛 ∈ (0...𝐷)) → (𝐴𝑛) ∈ 𝐹)
276sdrgss 20703 . . . . . . . . . . 11 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹𝐵)
285, 27syl 17 . . . . . . . . . 10 (𝜑𝐹𝐵)
2911, 6ressbas2 17144 . . . . . . . . . 10 (𝐹𝐵𝐹 = (Base‘(𝐸s 𝐹)))
3028, 29syl 17 . . . . . . . . 9 (𝜑𝐹 = (Base‘(𝐸s 𝐹)))
31 ovex 7374 . . . . . . . . . . 11 (𝐸s 𝐹) ∈ V
3214ply1sca 22160 . . . . . . . . . . 11 ((𝐸s 𝐹) ∈ V → (𝐸s 𝐹) = (Scalar‘(Poly1‘(𝐸s 𝐹))))
3331, 32ax-mp 5 . . . . . . . . . 10 (𝐸s 𝐹) = (Scalar‘(Poly1‘(𝐸s 𝐹)))
3433fveq2i 6820 . . . . . . . . 9 (Base‘(𝐸s 𝐹)) = (Base‘(Scalar‘(Poly1‘(𝐸s 𝐹))))
3530, 34eqtr2di 2783 . . . . . . . 8 (𝜑 → (Base‘(Scalar‘(Poly1‘(𝐸s 𝐹)))) = 𝐹)
3635adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ (0...𝐷)) → (Base‘(Scalar‘(Poly1‘(𝐸s 𝐹)))) = 𝐹)
3726, 36eleqtrrd 2834 . . . . . 6 ((𝜑𝑛 ∈ (0...𝐷)) → (𝐴𝑛) ∈ (Base‘(Scalar‘(Poly1‘(𝐸s 𝐹)))))
38 eqid 2731 . . . . . . . 8 (mulGrp‘(Poly1‘(𝐸s 𝐹))) = (mulGrp‘(Poly1‘(𝐸s 𝐹)))
3938, 7mgpbas 20058 . . . . . . 7 (Base‘(Poly1‘(𝐸s 𝐹))) = (Base‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))
40 eqid 2731 . . . . . . 7 (.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹)))) = (.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))
4138ringmgp 20152 . . . . . . . . 9 ((Poly1‘(𝐸s 𝐹)) ∈ Ring → (mulGrp‘(Poly1‘(𝐸s 𝐹))) ∈ Mnd)
4216, 41syl 17 . . . . . . . 8 (𝜑 → (mulGrp‘(Poly1‘(𝐸s 𝐹))) ∈ Mnd)
4342adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ (0...𝐷)) → (mulGrp‘(Poly1‘(𝐸s 𝐹))) ∈ Mnd)
44 fz0ssnn0 13517 . . . . . . . . 9 (0...𝐷) ⊆ ℕ0
4544a1i 11 . . . . . . . 8 (𝜑 → (0...𝐷) ⊆ ℕ0)
4645sselda 3929 . . . . . . 7 ((𝜑𝑛 ∈ (0...𝐷)) → 𝑛 ∈ ℕ0)
47 eqid 2731 . . . . . . . . . 10 (var1‘(𝐸s 𝐹)) = (var1‘(𝐸s 𝐹))
4847, 14, 7vr1cl 22125 . . . . . . . . 9 ((𝐸s 𝐹) ∈ Ring → (var1‘(𝐸s 𝐹)) ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
4913, 48syl 17 . . . . . . . 8 (𝜑 → (var1‘(𝐸s 𝐹)) ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
5049adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ (0...𝐷)) → (var1‘(𝐸s 𝐹)) ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
5139, 40, 43, 46, 50mulgnn0cld 19003 . . . . . 6 ((𝜑𝑛 ∈ (0...𝐷)) → (𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))) ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
527, 19, 20, 21, 24, 37, 51lmodvscld 20807 . . . . 5 ((𝜑𝑛 ∈ (0...𝐷)) → ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))) ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
5352fmpttd 7043 . . . 4 (𝜑 → (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))))):(0...𝐷)⟶(Base‘(Poly1‘(𝐸s 𝐹))))
54 eqid 2731 . . . . 5 (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))))) = (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))
55 fvexd 6832 . . . . 5 (𝜑 → (0g‘(Poly1‘(𝐸s 𝐹))) ∈ V)
5654, 18, 52, 55fsuppmptdm 9255 . . . 4 (𝜑 → (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))))) finSupp (0g‘(Poly1‘(𝐸s 𝐹))))
577, 8, 17, 18, 53, 56gsumcl 19822 . . 3 (𝜑 → ((Poly1‘(𝐸s 𝐹)) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))) ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
584fldcrngd 20652 . . . 4 (𝜑𝐸 ∈ CRing)
591, 14, 7, 58, 10evls1dm 33516 . . 3 (𝜑 → dom (𝐸 evalSub1 𝐹) = (Base‘(Poly1‘(𝐸s 𝐹))))
6057, 59eleqtrrd 2834 . 2 (𝜑 → ((Poly1‘(𝐸s 𝐹)) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))) ∈ dom (𝐸 evalSub1 𝐹))
61 extdgfialglem2.4 . . 3 (𝜑𝐴 ≠ ((0...𝐷) × {𝑍}))
62 eqid 2731 . . . . . 6 (Base‘(𝐸s 𝐹)) = (Base‘(𝐸s 𝐹))
63 eqid 2731 . . . . . 6 (0g‘(𝐸s 𝐹)) = (0g‘(𝐸s 𝐹))
6425ffvelcdmda 7012 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...𝐷)) → (𝐴𝑚) ∈ 𝐹)
6564adantlr 715 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 ∈ (0...𝐷)) → (𝐴𝑚) ∈ 𝐹)
6630ad2antrr 726 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 ∈ (0...𝐷)) → 𝐹 = (Base‘(𝐸s 𝐹)))
6765, 66eleqtrd 2833 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 ∈ (0...𝐷)) → (𝐴𝑚) ∈ (Base‘(𝐸s 𝐹)))
68 subrgsubg 20487 . . . . . . . . . . . 12 (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸))
6910, 68syl 17 . . . . . . . . . . 11 (𝜑𝐹 ∈ (SubGrp‘𝐸))
703subg0cl 19042 . . . . . . . . . . 11 (𝐹 ∈ (SubGrp‘𝐸) → 𝑍𝐹)
7169, 70syl 17 . . . . . . . . . 10 (𝜑𝑍𝐹)
7271, 30eleqtrd 2833 . . . . . . . . 9 (𝜑𝑍 ∈ (Base‘(𝐸s 𝐹)))
7372ad2antrr 726 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝑚 ∈ (0...𝐷)) → 𝑍 ∈ (Base‘(𝐸s 𝐹)))
7467, 73ifclda 4506 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) ∈ (Base‘(𝐸s 𝐹)))
7574ralrimiva 3124 . . . . . 6 (𝜑 → ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) ∈ (Base‘(𝐸s 𝐹)))
76 eqid 2731 . . . . . . . 8 (𝑚 ∈ ℕ0 ↦ if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍)) = (𝑚 ∈ ℕ0 ↦ if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍))
77 nn0ex 12382 . . . . . . . . 9 0 ∈ V
7877a1i 11 . . . . . . . 8 (𝜑 → ℕ0 ∈ V)
7976, 78, 18, 64, 71mptiffisupp 32666 . . . . . . 7 (𝜑 → (𝑚 ∈ ℕ0 ↦ if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍)) finSupp 𝑍)
8058crngringd 20159 . . . . . . . . . 10 (𝜑𝐸 ∈ Ring)
8180ringcmnd 20197 . . . . . . . . 9 (𝜑𝐸 ∈ CMnd)
8281cmnmndd 19711 . . . . . . . 8 (𝜑𝐸 ∈ Mnd)
8311, 6, 3ress0g 18665 . . . . . . . 8 ((𝐸 ∈ Mnd ∧ 𝑍𝐹𝐹𝐵) → 𝑍 = (0g‘(𝐸s 𝐹)))
8482, 71, 28, 83syl3anc 1373 . . . . . . 7 (𝜑𝑍 = (0g‘(𝐸s 𝐹)))
8579, 84breqtrd 5112 . . . . . 6 (𝜑 → (𝑚 ∈ ℕ0 ↦ if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍)) finSupp (0g‘(𝐸s 𝐹)))
8672ralrimivw 3128 . . . . . 6 (𝜑 → ∀𝑚 ∈ ℕ0 𝑍 ∈ (Base‘(𝐸s 𝐹)))
87 fconstmpt 5673 . . . . . . . 8 (ℕ0 × {𝑍}) = (𝑚 ∈ ℕ0𝑍)
8878, 71fczfsuppd 9265 . . . . . . . 8 (𝜑 → (ℕ0 × {𝑍}) finSupp 𝑍)
8987, 88eqbrtrrid 5122 . . . . . . 7 (𝜑 → (𝑚 ∈ ℕ0𝑍) finSupp 𝑍)
9089, 84breqtrd 5112 . . . . . 6 (𝜑 → (𝑚 ∈ ℕ0𝑍) finSupp (0g‘(𝐸s 𝐹)))
91 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℕ0 ∖ (0...𝐷))) → 𝑚 ∈ (ℕ0 ∖ (0...𝐷)))
9291eldifbd 3910 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℕ0 ∖ (0...𝐷))) → ¬ 𝑚 ∈ (0...𝐷))
9392iffalsed 4481 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℕ0 ∖ (0...𝐷))) → if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) = 𝑍)
9484adantr 480 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℕ0 ∖ (0...𝐷))) → 𝑍 = (0g‘(𝐸s 𝐹)))
9593, 94eqtrd 2766 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℕ0 ∖ (0...𝐷))) → if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) = (0g‘(𝐸s 𝐹)))
9695oveq1d 7356 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℕ0 ∖ (0...𝐷))) → (if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))) = ((0g‘(𝐸s 𝐹))( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))
9723adantr 480 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℕ0 ∖ (0...𝐷))) → (Poly1‘(𝐸s 𝐹)) ∈ LMod)
9842adantr 480 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℕ0 ∖ (0...𝐷))) → (mulGrp‘(Poly1‘(𝐸s 𝐹))) ∈ Mnd)
9991eldifad 3909 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℕ0 ∖ (0...𝐷))) → 𝑚 ∈ ℕ0)
10049adantr 480 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℕ0 ∖ (0...𝐷))) → (var1‘(𝐸s 𝐹)) ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
10139, 40, 98, 99, 100mulgnn0cld 19003 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℕ0 ∖ (0...𝐷))) → (𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))) ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
1027, 33, 20, 63, 8lmod0vs 20823 . . . . . . . . . 10 (((Poly1‘(𝐸s 𝐹)) ∈ LMod ∧ (𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))) ∈ (Base‘(Poly1‘(𝐸s 𝐹)))) → ((0g‘(𝐸s 𝐹))( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))) = (0g‘(Poly1‘(𝐸s 𝐹))))
10397, 101, 102syl2anc 584 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℕ0 ∖ (0...𝐷))) → ((0g‘(𝐸s 𝐹))( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))) = (0g‘(Poly1‘(𝐸s 𝐹))))
10496, 103eqtrd 2766 . . . . . . . 8 ((𝜑𝑚 ∈ (ℕ0 ∖ (0...𝐷))) → (if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))) = (0g‘(Poly1‘(𝐸s 𝐹))))
10523adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (Poly1‘(𝐸s 𝐹)) ∈ LMod)
10642adantr 480 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (mulGrp‘(Poly1‘(𝐸s 𝐹))) ∈ Mnd)
107 simpr 484 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
10849adantr 480 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (var1‘(𝐸s 𝐹)) ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
10939, 40, 106, 107, 108mulgnn0cld 19003 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))) ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
1107, 33, 20, 62, 105, 74, 109lmodvscld 20807 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))) ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
1117, 8, 17, 78, 104, 18, 110, 45gsummptres2 33025 . . . . . . 7 (𝜑 → ((Poly1‘(𝐸s 𝐹)) Σg (𝑚 ∈ ℕ0 ↦ (if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))) = ((Poly1‘(𝐸s 𝐹)) Σg (𝑚 ∈ (0...𝐷) ↦ (if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))))
112 eleq1w 2814 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑚 ∈ (0...𝐷) ↔ 𝑛 ∈ (0...𝐷)))
113 fveq2 6817 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝐴𝑚) = (𝐴𝑛))
114112, 113ifbieq1d 4495 . . . . . . . . . . 11 (𝑚 = 𝑛 → if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) = if(𝑛 ∈ (0...𝐷), (𝐴𝑛), 𝑍))
115 oveq1 7348 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))) = (𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))))
116114, 115oveq12d 7359 . . . . . . . . . 10 (𝑚 = 𝑛 → (if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))) = (if(𝑛 ∈ (0...𝐷), (𝐴𝑛), 𝑍)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))
117116cbvmptv 5190 . . . . . . . . 9 (𝑚 ∈ (0...𝐷) ↦ (if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))))) = (𝑛 ∈ (0...𝐷) ↦ (if(𝑛 ∈ (0...𝐷), (𝐴𝑛), 𝑍)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))
118 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0...𝐷)) → 𝑛 ∈ (0...𝐷))
119118iftrued 4478 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0...𝐷)) → if(𝑛 ∈ (0...𝐷), (𝐴𝑛), 𝑍) = (𝐴𝑛))
120119oveq1d 7356 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0...𝐷)) → (if(𝑛 ∈ (0...𝐷), (𝐴𝑛), 𝑍)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))) = ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))
121120mpteq2dva 5179 . . . . . . . . 9 (𝜑 → (𝑛 ∈ (0...𝐷) ↦ (if(𝑛 ∈ (0...𝐷), (𝐴𝑛), 𝑍)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))))) = (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))))))
122117, 121eqtrid 2778 . . . . . . . 8 (𝜑 → (𝑚 ∈ (0...𝐷) ↦ (if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))))) = (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))))))
123122oveq2d 7357 . . . . . . 7 (𝜑 → ((Poly1‘(𝐸s 𝐹)) Σg (𝑚 ∈ (0...𝐷) ↦ (if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))) = ((Poly1‘(𝐸s 𝐹)) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))))
124111, 123eqtr2d 2767 . . . . . 6 (𝜑 → ((Poly1‘(𝐸s 𝐹)) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))) = ((Poly1‘(𝐸s 𝐹)) Σg (𝑚 ∈ ℕ0 ↦ (if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))))
12517cmnmndd 19711 . . . . . . . 8 (𝜑 → (Poly1‘(𝐸s 𝐹)) ∈ Mnd)
1268gsumz 18739 . . . . . . . 8 (((Poly1‘(𝐸s 𝐹)) ∈ Mnd ∧ ℕ0 ∈ V) → ((Poly1‘(𝐸s 𝐹)) Σg (𝑚 ∈ ℕ0 ↦ (0g‘(Poly1‘(𝐸s 𝐹))))) = (0g‘(Poly1‘(𝐸s 𝐹))))
127125, 78, 126syl2anc 584 . . . . . . 7 (𝜑 → ((Poly1‘(𝐸s 𝐹)) Σg (𝑚 ∈ ℕ0 ↦ (0g‘(Poly1‘(𝐸s 𝐹))))) = (0g‘(Poly1‘(𝐸s 𝐹))))
12884adantr 480 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → 𝑍 = (0g‘(𝐸s 𝐹)))
129128oveq1d 7356 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (𝑍( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))) = ((0g‘(𝐸s 𝐹))( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))
130105, 109, 102syl2anc 584 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → ((0g‘(𝐸s 𝐹))( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))) = (0g‘(Poly1‘(𝐸s 𝐹))))
131129, 130eqtrd 2766 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (𝑍( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))) = (0g‘(Poly1‘(𝐸s 𝐹))))
132131mpteq2dva 5179 . . . . . . . 8 (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝑍( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))))) = (𝑚 ∈ ℕ0 ↦ (0g‘(Poly1‘(𝐸s 𝐹)))))
133132oveq2d 7357 . . . . . . 7 (𝜑 → ((Poly1‘(𝐸s 𝐹)) Σg (𝑚 ∈ ℕ0 ↦ (𝑍( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))) = ((Poly1‘(𝐸s 𝐹)) Σg (𝑚 ∈ ℕ0 ↦ (0g‘(Poly1‘(𝐸s 𝐹))))))
134 eqid 2731 . . . . . . . 8 (Poly1𝐸) = (Poly1𝐸)
135134, 11, 14, 7, 10, 2ressply10g 33522 . . . . . . 7 (𝜑 → (0g‘(Poly1𝐸)) = (0g‘(Poly1‘(𝐸s 𝐹))))
136127, 133, 1353eqtr4rd 2777 . . . . . 6 (𝜑 → (0g‘(Poly1𝐸)) = ((Poly1‘(𝐸s 𝐹)) Σg (𝑚 ∈ ℕ0 ↦ (𝑍( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))))
13714, 47, 40, 13, 62, 20, 63, 75, 85, 86, 90, 124, 136gsumply1eq 22219 . . . . 5 (𝜑 → (((Poly1‘(𝐸s 𝐹)) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))) = (0g‘(Poly1𝐸)) ↔ ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) = 𝑍))
13825ffnd 6647 . . . . . . . 8 (𝜑𝐴 Fn (0...𝐷))
139138adantr 480 . . . . . . 7 ((𝜑 ∧ ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) = 𝑍) → 𝐴 Fn (0...𝐷))
140119adantlr 715 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) = 𝑍) ∧ 𝑛 ∈ (0...𝐷)) → if(𝑛 ∈ (0...𝐷), (𝐴𝑛), 𝑍) = (𝐴𝑛))
141114eqeq1d 2733 . . . . . . . . 9 (𝑚 = 𝑛 → (if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) = 𝑍 ↔ if(𝑛 ∈ (0...𝐷), (𝐴𝑛), 𝑍) = 𝑍))
142 simplr 768 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) = 𝑍) ∧ 𝑛 ∈ (0...𝐷)) → ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) = 𝑍)
14344a1i 11 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) = 𝑍) → (0...𝐷) ⊆ ℕ0)
144143sselda 3929 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) = 𝑍) ∧ 𝑛 ∈ (0...𝐷)) → 𝑛 ∈ ℕ0)
145141, 142, 144rspcdva 3573 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) = 𝑍) ∧ 𝑛 ∈ (0...𝐷)) → if(𝑛 ∈ (0...𝐷), (𝐴𝑛), 𝑍) = 𝑍)
146140, 145eqtr3d 2768 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) = 𝑍) ∧ 𝑛 ∈ (0...𝐷)) → (𝐴𝑛) = 𝑍)
147139, 146fconst7v 32595 . . . . . 6 ((𝜑 ∧ ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) = 𝑍) → 𝐴 = ((0...𝐷) × {𝑍}))
148147ex 412 . . . . 5 (𝜑 → (∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) = 𝑍𝐴 = ((0...𝐷) × {𝑍})))
149137, 148sylbid 240 . . . 4 (𝜑 → (((Poly1‘(𝐸s 𝐹)) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))) = (0g‘(Poly1𝐸)) → 𝐴 = ((0...𝐷) × {𝑍})))
150149necon3d 2949 . . 3 (𝜑 → (𝐴 ≠ ((0...𝐷) × {𝑍}) → ((Poly1‘(𝐸s 𝐹)) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))) ≠ (0g‘(Poly1𝐸))))
15161, 150mpd 15 . 2 (𝜑 → ((Poly1‘(𝐸s 𝐹)) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))) ≠ (0g‘(Poly1𝐸)))
152 eqid 2731 . . . . 5 (𝐸s 𝐵) = (𝐸s 𝐵)
1531, 6, 14, 8, 11, 152, 7, 58, 10, 52, 45, 56evls1gsumadd 22234 . . . 4 (𝜑 → ((𝐸 evalSub1 𝐹)‘((Poly1‘(𝐸s 𝐹)) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))))))) = ((𝐸s 𝐵) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))))))))
154153fveq1d 6819 . . 3 (𝜑 → (((𝐸 evalSub1 𝐹)‘((Poly1‘(𝐸s 𝐹)) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))))‘𝑋) = (((𝐸s 𝐵) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))))‘𝑋))
15558adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0...𝐷)) → 𝐸 ∈ CRing)
15610adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0...𝐷)) → 𝐹 ∈ (SubRing‘𝐸))
1571, 14, 7, 155, 156, 6, 52evls1fvf 33517 . . . . . . . . 9 ((𝜑𝑛 ∈ (0...𝐷)) → ((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))))):𝐵𝐵)
158157feqmptd 6885 . . . . . . . 8 ((𝜑𝑛 ∈ (0...𝐷)) → ((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))))) = (𝑥𝐵 ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥)))
159158mpteq2dva 5179 . . . . . . 7 (𝜑 → (𝑛 ∈ (0...𝐷) ↦ ((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))) = (𝑛 ∈ (0...𝐷) ↦ (𝑥𝐵 ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥))))
160159oveq2d 7357 . . . . . 6 (𝜑 → ((𝐸s 𝐵) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))))))) = ((𝐸s 𝐵) Σg (𝑛 ∈ (0...𝐷) ↦ (𝑥𝐵 ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥)))))
161160fveq1d 6819 . . . . 5 (𝜑 → (((𝐸s 𝐵) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))))‘𝑋) = (((𝐸s 𝐵) Σg (𝑛 ∈ (0...𝐷) ↦ (𝑥𝐵 ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥))))‘𝑋))
162 eqid 2731 . . . . . . 7 (0g‘(𝐸s 𝐵)) = (0g‘(𝐸s 𝐵))
1636fvexi 6831 . . . . . . . 8 𝐵 ∈ V
164163a1i 11 . . . . . . 7 (𝜑𝐵 ∈ V)
165155adantr 480 . . . . . . . . . 10 (((𝜑𝑛 ∈ (0...𝐷)) ∧ 𝑥𝐵) → 𝐸 ∈ CRing)
166156adantr 480 . . . . . . . . . 10 (((𝜑𝑛 ∈ (0...𝐷)) ∧ 𝑥𝐵) → 𝐹 ∈ (SubRing‘𝐸))
167 simpr 484 . . . . . . . . . 10 (((𝜑𝑛 ∈ (0...𝐷)) ∧ 𝑥𝐵) → 𝑥𝐵)
16852adantr 480 . . . . . . . . . 10 (((𝜑𝑛 ∈ (0...𝐷)) ∧ 𝑥𝐵) → ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))) ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
1691, 14, 6, 7, 165, 166, 167, 168evls1fvcl 22285 . . . . . . . . 9 (((𝜑𝑛 ∈ (0...𝐷)) ∧ 𝑥𝐵) → (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥) ∈ 𝐵)
170169an32s 652 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑛 ∈ (0...𝐷)) → (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥) ∈ 𝐵)
171170anasss 466 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑛 ∈ (0...𝐷))) → (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥) ∈ 𝐵)
172 eqid 2731 . . . . . . . 8 (𝑛 ∈ (0...𝐷) ↦ (𝑥𝐵 ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥))) = (𝑛 ∈ (0...𝐷) ↦ (𝑥𝐵 ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥)))
173163a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ (0...𝐷)) → 𝐵 ∈ V)
174173mptexd 7153 . . . . . . . 8 ((𝜑𝑛 ∈ (0...𝐷)) → (𝑥𝐵 ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥)) ∈ V)
175 fvexd 6832 . . . . . . . 8 (𝜑 → (0g‘(𝐸s 𝐵)) ∈ V)
176172, 18, 174, 175fsuppmptdm 9255 . . . . . . 7 (𝜑 → (𝑛 ∈ (0...𝐷) ↦ (𝑥𝐵 ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥))) finSupp (0g‘(𝐸s 𝐵)))
177152, 6, 162, 164, 18, 81, 171, 176pwsgsum 19889 . . . . . 6 (𝜑 → ((𝐸s 𝐵) Σg (𝑛 ∈ (0...𝐷) ↦ (𝑥𝐵 ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥)))) = (𝑥𝐵 ↦ (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥)))))
178177fveq1d 6819 . . . . 5 (𝜑 → (((𝐸s 𝐵) Σg (𝑛 ∈ (0...𝐷) ↦ (𝑥𝐵 ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥))))‘𝑋) = ((𝑥𝐵 ↦ (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥))))‘𝑋))
179161, 178eqtrd 2766 . . . 4 (𝜑 → (((𝐸s 𝐵) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))))‘𝑋) = ((𝑥𝐵 ↦ (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥))))‘𝑋))
180 fveq2 6817 . . . . . . 7 (𝑥 = 𝑋 → (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥) = (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑋))
181180mpteq2dv 5180 . . . . . 6 (𝑥 = 𝑋 → (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥)) = (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑋)))
182181oveq2d 7357 . . . . 5 (𝑥 = 𝑋 → (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥))) = (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑋))))
183 eqidd 2732 . . . . 5 (𝜑 → (𝑥𝐵 ↦ (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥)))) = (𝑥𝐵 ↦ (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥)))))
184 extdgfialglem1.4 . . . . 5 (𝜑𝑋𝐵)
185 ovexd 7376 . . . . 5 (𝜑 → (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑋))) ∈ V)
186182, 183, 184, 185fvmptd4 6948 . . . 4 (𝜑 → ((𝑥𝐵 ↦ (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥))))‘𝑋) = (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑋))))
187 eqid 2731 . . . . . . . 8 (.g‘(mulGrp‘𝐸)) = (.g‘(mulGrp‘𝐸))
188 extdgfialglem1.3 . . . . . . . 8 · = (.r𝐸)
189184adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (0...𝐷)) → 𝑋𝐵)
1901, 6, 14, 11, 47, 40, 187, 20, 188, 155, 156, 26, 46, 189evls1monply1 33534 . . . . . . 7 ((𝜑𝑛 ∈ (0...𝐷)) → (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑋) = ((𝐴𝑛) · (𝑛(.g‘(mulGrp‘𝐸))𝑋)))
191190mpteq2dva 5179 . . . . . 6 (𝜑 → (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑋)) = (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛) · (𝑛(.g‘(mulGrp‘𝐸))𝑋))))
192 nfv 1915 . . . . . . . 8 𝑛𝜑
193 ovexd 7376 . . . . . . . 8 ((𝜑𝑛 ∈ (0...𝐷)) → (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋) ∈ V)
194 extdgfialglem1.r . . . . . . . 8 𝐺 = (𝑛 ∈ (0...𝐷) ↦ (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋))
195192, 193, 194fnmptd 6617 . . . . . . 7 (𝜑𝐺 Fn (0...𝐷))
196 inidm 4172 . . . . . . 7 ((0...𝐷) ∩ (0...𝐷)) = (0...𝐷)
197 eqidd 2732 . . . . . . 7 ((𝜑𝑛 ∈ (0...𝐷)) → (𝐴𝑛) = (𝐴𝑛))
198194fvmpt2 6935 . . . . . . . . 9 ((𝑛 ∈ (0...𝐷) ∧ (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋) ∈ V) → (𝐺𝑛) = (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋))
199118, 193, 198syl2anc 584 . . . . . . . 8 ((𝜑𝑛 ∈ (0...𝐷)) → (𝐺𝑛) = (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋))
200 eqid 2731 . . . . . . . . . . 11 ((subringAlg ‘𝐸)‘𝐹) = ((subringAlg ‘𝐸)‘𝐹)
20128, 6sseqtrdi 3970 . . . . . . . . . . 11 (𝜑𝐹 ⊆ (Base‘𝐸))
202200, 80, 201srapwov 33593 . . . . . . . . . 10 (𝜑 → (.g‘(mulGrp‘𝐸)) = (.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹))))
203202oveqd 7358 . . . . . . . . 9 (𝜑 → (𝑛(.g‘(mulGrp‘𝐸))𝑋) = (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋))
204203adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (0...𝐷)) → (𝑛(.g‘(mulGrp‘𝐸))𝑋) = (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋))
205199, 204eqtr4d 2769 . . . . . . 7 ((𝜑𝑛 ∈ (0...𝐷)) → (𝐺𝑛) = (𝑛(.g‘(mulGrp‘𝐸))𝑋))
206138, 195, 18, 18, 196, 197, 205offval 7614 . . . . . 6 (𝜑 → (𝐴f · 𝐺) = (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛) · (𝑛(.g‘(mulGrp‘𝐸))𝑋))))
207191, 206eqtr4d 2769 . . . . 5 (𝜑 → (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑋)) = (𝐴f · 𝐺))
208207oveq2d 7357 . . . 4 (𝜑 → (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑋))) = (𝐸 Σg (𝐴f · 𝐺)))
209179, 186, 2083eqtrd 2770 . . 3 (𝜑 → (((𝐸s 𝐵) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))))‘𝑋) = (𝐸 Σg (𝐴f · 𝐺)))
210 extdgfialglem2.3 . . 3 (𝜑 → (𝐸 Σg (𝐴f · 𝐺)) = 𝑍)
211154, 209, 2103eqtrd 2770 . 2 (𝜑 → (((𝐸 evalSub1 𝐹)‘((Poly1‘(𝐸s 𝐹)) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))))‘𝑋) = 𝑍)
2121, 2, 3, 4, 5, 6, 60, 151, 211, 184irngnzply1lem 33695 1 (𝜑𝑋 ∈ (𝐸 IntgRing 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  Vcvv 3436  cdif 3894  wss 3897  ifcif 4470  {csn 4571   class class class wbr 5086  cmpt 5167   × cxp 5609  dom cdm 5611   Fn wfn 6471  wf 6472  cfv 6476  (class class class)co 7341  f cof 7603  Fincfn 8864   finSupp cfsupp 9240  0cc0 11001  0cn0 12376  ...cfz 13402  Basecbs 17115  s cress 17136  .rcmulr 17157  Scalarcsca 17159   ·𝑠 cvsca 17160  0gc0g 17338   Σg cgsu 17339  s cpws 17345  Mndcmnd 18637  .gcmg 18975  SubGrpcsubg 19028  mulGrpcmgp 20053  Ringcrg 20146  CRingccrg 20147  SubRingcsubrg 20479  Fieldcfield 20640  SubDRingcsdrg 20696  LModclmod 20788  subringAlg csra 21100  var1cv1 22083  Poly1cpl1 22084   evalSub1 ces1 22223  dimcldim 33603   IntgRing cirng 33688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-fz 13403  df-fzo 13550  df-seq 13904  df-hash 14233  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-0g 17340  df-gsum 17341  df-prds 17346  df-pws 17348  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19120  df-cntz 19224  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-srg 20100  df-ring 20148  df-cring 20149  df-oppr 20250  df-dvdsr 20270  df-unit 20271  df-invr 20301  df-rhm 20385  df-subrng 20456  df-subrg 20480  df-rlreg 20604  df-drng 20641  df-field 20642  df-sdrg 20697  df-lmod 20790  df-lss 20860  df-lsp 20900  df-sra 21102  df-cnfld 21287  df-assa 21785  df-asp 21786  df-ascl 21787  df-psr 21841  df-mvr 21842  df-mpl 21843  df-opsr 21845  df-evls 22004  df-evl 22005  df-psr1 22087  df-vr1 22088  df-ply1 22089  df-coe1 22090  df-evls1 22225  df-evl1 22226  df-mdeg 25982  df-deg1 25983  df-mon1 26058  df-uc1p 26059  df-irng 33689
This theorem is referenced by:  extdgfialg  33699
  Copyright terms: Public domain W3C validator