Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extdgfialglem2 Structured version   Visualization version   GIF version

Theorem extdgfialglem2 33679
Description: Lemma for extdgfialg 33680. (Contributed by Thierry Arnoux, 10-Jan-2026.)
Hypotheses
Ref Expression
extdgfialg.b 𝐵 = (Base‘𝐸)
extdgfialg.d 𝐷 = (dim‘((subringAlg ‘𝐸)‘𝐹))
extdgfialg.e (𝜑𝐸 ∈ Field)
extdgfialg.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
extdgfialg.1 (𝜑𝐷 ∈ ℕ0)
extdgfialglem1.2 𝑍 = (0g𝐸)
extdgfialglem1.3 · = (.r𝐸)
extdgfialglem1.r 𝐺 = (𝑛 ∈ (0...𝐷) ↦ (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋))
extdgfialglem1.4 (𝜑𝑋𝐵)
extdgfialglem2.1 (𝜑𝐴:(0...𝐷)⟶𝐹)
extdgfialglem2.2 (𝜑𝐴 finSupp 𝑍)
extdgfialglem2.3 (𝜑 → (𝐸 Σg (𝐴f · 𝐺)) = 𝑍)
extdgfialglem2.4 (𝜑𝐴 ≠ ((0...𝐷) × {𝑍}))
Assertion
Ref Expression
extdgfialglem2 (𝜑𝑋 ∈ (𝐸 IntgRing 𝐹))
Distinct variable groups:   · ,𝑛   𝐴,𝑛   𝐵,𝑛   𝐷,𝑛   𝑛,𝐸   𝑛,𝐹   𝑛,𝐺   𝑛,𝑋   𝑛,𝑍   𝜑,𝑛

Proof of Theorem extdgfialglem2
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 (𝐸 evalSub1 𝐹) = (𝐸 evalSub1 𝐹)
2 eqid 2729 . 2 (0g‘(Poly1𝐸)) = (0g‘(Poly1𝐸))
3 extdgfialglem1.2 . 2 𝑍 = (0g𝐸)
4 extdgfialg.e . 2 (𝜑𝐸 ∈ Field)
5 extdgfialg.f . 2 (𝜑𝐹 ∈ (SubDRing‘𝐸))
6 extdgfialg.b . 2 𝐵 = (Base‘𝐸)
7 eqid 2729 . . . 4 (Base‘(Poly1‘(𝐸s 𝐹))) = (Base‘(Poly1‘(𝐸s 𝐹)))
8 eqid 2729 . . . 4 (0g‘(Poly1‘(𝐸s 𝐹))) = (0g‘(Poly1‘(𝐸s 𝐹)))
9 sdrgsubrg 20695 . . . . . . . 8 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
105, 9syl 17 . . . . . . 7 (𝜑𝐹 ∈ (SubRing‘𝐸))
11 eqid 2729 . . . . . . . 8 (𝐸s 𝐹) = (𝐸s 𝐹)
1211subrgring 20478 . . . . . . 7 (𝐹 ∈ (SubRing‘𝐸) → (𝐸s 𝐹) ∈ Ring)
1310, 12syl 17 . . . . . 6 (𝜑 → (𝐸s 𝐹) ∈ Ring)
14 eqid 2729 . . . . . . 7 (Poly1‘(𝐸s 𝐹)) = (Poly1‘(𝐸s 𝐹))
1514ply1ring 22149 . . . . . 6 ((𝐸s 𝐹) ∈ Ring → (Poly1‘(𝐸s 𝐹)) ∈ Ring)
1613, 15syl 17 . . . . 5 (𝜑 → (Poly1‘(𝐸s 𝐹)) ∈ Ring)
1716ringcmnd 20188 . . . 4 (𝜑 → (Poly1‘(𝐸s 𝐹)) ∈ CMnd)
18 fzfid 13899 . . . 4 (𝜑 → (0...𝐷) ∈ Fin)
19 eqid 2729 . . . . . 6 (Scalar‘(Poly1‘(𝐸s 𝐹))) = (Scalar‘(Poly1‘(𝐸s 𝐹)))
20 eqid 2729 . . . . . 6 ( ·𝑠 ‘(Poly1‘(𝐸s 𝐹))) = ( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))
21 eqid 2729 . . . . . 6 (Base‘(Scalar‘(Poly1‘(𝐸s 𝐹)))) = (Base‘(Scalar‘(Poly1‘(𝐸s 𝐹))))
2214ply1lmod 22153 . . . . . . . 8 ((𝐸s 𝐹) ∈ Ring → (Poly1‘(𝐸s 𝐹)) ∈ LMod)
2313, 22syl 17 . . . . . . 7 (𝜑 → (Poly1‘(𝐸s 𝐹)) ∈ LMod)
2423adantr 480 . . . . . 6 ((𝜑𝑛 ∈ (0...𝐷)) → (Poly1‘(𝐸s 𝐹)) ∈ LMod)
25 extdgfialglem2.1 . . . . . . . 8 (𝜑𝐴:(0...𝐷)⟶𝐹)
2625ffvelcdmda 7022 . . . . . . 7 ((𝜑𝑛 ∈ (0...𝐷)) → (𝐴𝑛) ∈ 𝐹)
276sdrgss 20697 . . . . . . . . . . 11 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹𝐵)
285, 27syl 17 . . . . . . . . . 10 (𝜑𝐹𝐵)
2911, 6ressbas2 17168 . . . . . . . . . 10 (𝐹𝐵𝐹 = (Base‘(𝐸s 𝐹)))
3028, 29syl 17 . . . . . . . . 9 (𝜑𝐹 = (Base‘(𝐸s 𝐹)))
31 ovex 7386 . . . . . . . . . . 11 (𝐸s 𝐹) ∈ V
3214ply1sca 22154 . . . . . . . . . . 11 ((𝐸s 𝐹) ∈ V → (𝐸s 𝐹) = (Scalar‘(Poly1‘(𝐸s 𝐹))))
3331, 32ax-mp 5 . . . . . . . . . 10 (𝐸s 𝐹) = (Scalar‘(Poly1‘(𝐸s 𝐹)))
3433fveq2i 6829 . . . . . . . . 9 (Base‘(𝐸s 𝐹)) = (Base‘(Scalar‘(Poly1‘(𝐸s 𝐹))))
3530, 34eqtr2di 2781 . . . . . . . 8 (𝜑 → (Base‘(Scalar‘(Poly1‘(𝐸s 𝐹)))) = 𝐹)
3635adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ (0...𝐷)) → (Base‘(Scalar‘(Poly1‘(𝐸s 𝐹)))) = 𝐹)
3726, 36eleqtrrd 2831 . . . . . 6 ((𝜑𝑛 ∈ (0...𝐷)) → (𝐴𝑛) ∈ (Base‘(Scalar‘(Poly1‘(𝐸s 𝐹)))))
38 eqid 2729 . . . . . . . 8 (mulGrp‘(Poly1‘(𝐸s 𝐹))) = (mulGrp‘(Poly1‘(𝐸s 𝐹)))
3938, 7mgpbas 20049 . . . . . . 7 (Base‘(Poly1‘(𝐸s 𝐹))) = (Base‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))
40 eqid 2729 . . . . . . 7 (.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹)))) = (.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))
4138ringmgp 20143 . . . . . . . . 9 ((Poly1‘(𝐸s 𝐹)) ∈ Ring → (mulGrp‘(Poly1‘(𝐸s 𝐹))) ∈ Mnd)
4216, 41syl 17 . . . . . . . 8 (𝜑 → (mulGrp‘(Poly1‘(𝐸s 𝐹))) ∈ Mnd)
4342adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ (0...𝐷)) → (mulGrp‘(Poly1‘(𝐸s 𝐹))) ∈ Mnd)
44 fz0ssnn0 13544 . . . . . . . . 9 (0...𝐷) ⊆ ℕ0
4544a1i 11 . . . . . . . 8 (𝜑 → (0...𝐷) ⊆ ℕ0)
4645sselda 3937 . . . . . . 7 ((𝜑𝑛 ∈ (0...𝐷)) → 𝑛 ∈ ℕ0)
47 eqid 2729 . . . . . . . . . 10 (var1‘(𝐸s 𝐹)) = (var1‘(𝐸s 𝐹))
4847, 14, 7vr1cl 22119 . . . . . . . . 9 ((𝐸s 𝐹) ∈ Ring → (var1‘(𝐸s 𝐹)) ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
4913, 48syl 17 . . . . . . . 8 (𝜑 → (var1‘(𝐸s 𝐹)) ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
5049adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ (0...𝐷)) → (var1‘(𝐸s 𝐹)) ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
5139, 40, 43, 46, 50mulgnn0cld 18993 . . . . . 6 ((𝜑𝑛 ∈ (0...𝐷)) → (𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))) ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
527, 19, 20, 21, 24, 37, 51lmodvscld 20801 . . . . 5 ((𝜑𝑛 ∈ (0...𝐷)) → ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))) ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
5352fmpttd 7053 . . . 4 (𝜑 → (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))))):(0...𝐷)⟶(Base‘(Poly1‘(𝐸s 𝐹))))
54 eqid 2729 . . . . 5 (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))))) = (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))
55 fvexd 6841 . . . . 5 (𝜑 → (0g‘(Poly1‘(𝐸s 𝐹))) ∈ V)
5654, 18, 52, 55fsuppmptdm 9285 . . . 4 (𝜑 → (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))))) finSupp (0g‘(Poly1‘(𝐸s 𝐹))))
577, 8, 17, 18, 53, 56gsumcl 19813 . . 3 (𝜑 → ((Poly1‘(𝐸s 𝐹)) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))) ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
584fldcrngd 20646 . . . 4 (𝜑𝐸 ∈ CRing)
591, 14, 7, 58, 10evls1dm 33515 . . 3 (𝜑 → dom (𝐸 evalSub1 𝐹) = (Base‘(Poly1‘(𝐸s 𝐹))))
6057, 59eleqtrrd 2831 . 2 (𝜑 → ((Poly1‘(𝐸s 𝐹)) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))) ∈ dom (𝐸 evalSub1 𝐹))
61 extdgfialglem2.4 . . 3 (𝜑𝐴 ≠ ((0...𝐷) × {𝑍}))
62 eqid 2729 . . . . . 6 (Base‘(𝐸s 𝐹)) = (Base‘(𝐸s 𝐹))
63 eqid 2729 . . . . . 6 (0g‘(𝐸s 𝐹)) = (0g‘(𝐸s 𝐹))
6425ffvelcdmda 7022 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...𝐷)) → (𝐴𝑚) ∈ 𝐹)
6564adantlr 715 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 ∈ (0...𝐷)) → (𝐴𝑚) ∈ 𝐹)
6630ad2antrr 726 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 ∈ (0...𝐷)) → 𝐹 = (Base‘(𝐸s 𝐹)))
6765, 66eleqtrd 2830 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑚 ∈ (0...𝐷)) → (𝐴𝑚) ∈ (Base‘(𝐸s 𝐹)))
68 subrgsubg 20481 . . . . . . . . . . . 12 (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸))
6910, 68syl 17 . . . . . . . . . . 11 (𝜑𝐹 ∈ (SubGrp‘𝐸))
703subg0cl 19032 . . . . . . . . . . 11 (𝐹 ∈ (SubGrp‘𝐸) → 𝑍𝐹)
7169, 70syl 17 . . . . . . . . . 10 (𝜑𝑍𝐹)
7271, 30eleqtrd 2830 . . . . . . . . 9 (𝜑𝑍 ∈ (Base‘(𝐸s 𝐹)))
7372ad2antrr 726 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ¬ 𝑚 ∈ (0...𝐷)) → 𝑍 ∈ (Base‘(𝐸s 𝐹)))
7467, 73ifclda 4514 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) ∈ (Base‘(𝐸s 𝐹)))
7574ralrimiva 3121 . . . . . 6 (𝜑 → ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) ∈ (Base‘(𝐸s 𝐹)))
76 eqid 2729 . . . . . . . 8 (𝑚 ∈ ℕ0 ↦ if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍)) = (𝑚 ∈ ℕ0 ↦ if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍))
77 nn0ex 12409 . . . . . . . . 9 0 ∈ V
7877a1i 11 . . . . . . . 8 (𝜑 → ℕ0 ∈ V)
7976, 78, 18, 64, 71mptiffisupp 32654 . . . . . . 7 (𝜑 → (𝑚 ∈ ℕ0 ↦ if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍)) finSupp 𝑍)
8058crngringd 20150 . . . . . . . . . 10 (𝜑𝐸 ∈ Ring)
8180ringcmnd 20188 . . . . . . . . 9 (𝜑𝐸 ∈ CMnd)
8281cmnmndd 19702 . . . . . . . 8 (𝜑𝐸 ∈ Mnd)
8311, 6, 3ress0g 18655 . . . . . . . 8 ((𝐸 ∈ Mnd ∧ 𝑍𝐹𝐹𝐵) → 𝑍 = (0g‘(𝐸s 𝐹)))
8482, 71, 28, 83syl3anc 1373 . . . . . . 7 (𝜑𝑍 = (0g‘(𝐸s 𝐹)))
8579, 84breqtrd 5121 . . . . . 6 (𝜑 → (𝑚 ∈ ℕ0 ↦ if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍)) finSupp (0g‘(𝐸s 𝐹)))
8672ralrimivw 3125 . . . . . 6 (𝜑 → ∀𝑚 ∈ ℕ0 𝑍 ∈ (Base‘(𝐸s 𝐹)))
87 fconstmpt 5685 . . . . . . . 8 (ℕ0 × {𝑍}) = (𝑚 ∈ ℕ0𝑍)
8878, 71fczfsuppd 9295 . . . . . . . 8 (𝜑 → (ℕ0 × {𝑍}) finSupp 𝑍)
8987, 88eqbrtrrid 5131 . . . . . . 7 (𝜑 → (𝑚 ∈ ℕ0𝑍) finSupp 𝑍)
9089, 84breqtrd 5121 . . . . . 6 (𝜑 → (𝑚 ∈ ℕ0𝑍) finSupp (0g‘(𝐸s 𝐹)))
91 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (ℕ0 ∖ (0...𝐷))) → 𝑚 ∈ (ℕ0 ∖ (0...𝐷)))
9291eldifbd 3918 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (ℕ0 ∖ (0...𝐷))) → ¬ 𝑚 ∈ (0...𝐷))
9392iffalsed 4489 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℕ0 ∖ (0...𝐷))) → if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) = 𝑍)
9484adantr 480 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℕ0 ∖ (0...𝐷))) → 𝑍 = (0g‘(𝐸s 𝐹)))
9593, 94eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℕ0 ∖ (0...𝐷))) → if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) = (0g‘(𝐸s 𝐹)))
9695oveq1d 7368 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℕ0 ∖ (0...𝐷))) → (if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))) = ((0g‘(𝐸s 𝐹))( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))
9723adantr 480 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℕ0 ∖ (0...𝐷))) → (Poly1‘(𝐸s 𝐹)) ∈ LMod)
9842adantr 480 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℕ0 ∖ (0...𝐷))) → (mulGrp‘(Poly1‘(𝐸s 𝐹))) ∈ Mnd)
9991eldifad 3917 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℕ0 ∖ (0...𝐷))) → 𝑚 ∈ ℕ0)
10049adantr 480 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (ℕ0 ∖ (0...𝐷))) → (var1‘(𝐸s 𝐹)) ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
10139, 40, 98, 99, 100mulgnn0cld 18993 . . . . . . . . . 10 ((𝜑𝑚 ∈ (ℕ0 ∖ (0...𝐷))) → (𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))) ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
1027, 33, 20, 63, 8lmod0vs 20817 . . . . . . . . . 10 (((Poly1‘(𝐸s 𝐹)) ∈ LMod ∧ (𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))) ∈ (Base‘(Poly1‘(𝐸s 𝐹)))) → ((0g‘(𝐸s 𝐹))( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))) = (0g‘(Poly1‘(𝐸s 𝐹))))
10397, 101, 102syl2anc 584 . . . . . . . . 9 ((𝜑𝑚 ∈ (ℕ0 ∖ (0...𝐷))) → ((0g‘(𝐸s 𝐹))( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))) = (0g‘(Poly1‘(𝐸s 𝐹))))
10496, 103eqtrd 2764 . . . . . . . 8 ((𝜑𝑚 ∈ (ℕ0 ∖ (0...𝐷))) → (if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))) = (0g‘(Poly1‘(𝐸s 𝐹))))
10523adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (Poly1‘(𝐸s 𝐹)) ∈ LMod)
10642adantr 480 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (mulGrp‘(Poly1‘(𝐸s 𝐹))) ∈ Mnd)
107 simpr 484 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
10849adantr 480 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (var1‘(𝐸s 𝐹)) ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
10939, 40, 106, 107, 108mulgnn0cld 18993 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))) ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
1107, 33, 20, 62, 105, 74, 109lmodvscld 20801 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))) ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
1117, 8, 17, 78, 104, 18, 110, 45gsummptres2 33025 . . . . . . 7 (𝜑 → ((Poly1‘(𝐸s 𝐹)) Σg (𝑚 ∈ ℕ0 ↦ (if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))) = ((Poly1‘(𝐸s 𝐹)) Σg (𝑚 ∈ (0...𝐷) ↦ (if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))))
112 eleq1w 2811 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑚 ∈ (0...𝐷) ↔ 𝑛 ∈ (0...𝐷)))
113 fveq2 6826 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝐴𝑚) = (𝐴𝑛))
114112, 113ifbieq1d 4503 . . . . . . . . . . 11 (𝑚 = 𝑛 → if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) = if(𝑛 ∈ (0...𝐷), (𝐴𝑛), 𝑍))
115 oveq1 7360 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))) = (𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))))
116114, 115oveq12d 7371 . . . . . . . . . 10 (𝑚 = 𝑛 → (if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))) = (if(𝑛 ∈ (0...𝐷), (𝐴𝑛), 𝑍)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))
117116cbvmptv 5199 . . . . . . . . 9 (𝑚 ∈ (0...𝐷) ↦ (if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))))) = (𝑛 ∈ (0...𝐷) ↦ (if(𝑛 ∈ (0...𝐷), (𝐴𝑛), 𝑍)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))
118 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0...𝐷)) → 𝑛 ∈ (0...𝐷))
119118iftrued 4486 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0...𝐷)) → if(𝑛 ∈ (0...𝐷), (𝐴𝑛), 𝑍) = (𝐴𝑛))
120119oveq1d 7368 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0...𝐷)) → (if(𝑛 ∈ (0...𝐷), (𝐴𝑛), 𝑍)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))) = ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))
121120mpteq2dva 5188 . . . . . . . . 9 (𝜑 → (𝑛 ∈ (0...𝐷) ↦ (if(𝑛 ∈ (0...𝐷), (𝐴𝑛), 𝑍)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))))) = (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))))))
122117, 121eqtrid 2776 . . . . . . . 8 (𝜑 → (𝑚 ∈ (0...𝐷) ↦ (if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))))) = (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))))))
123122oveq2d 7369 . . . . . . 7 (𝜑 → ((Poly1‘(𝐸s 𝐹)) Σg (𝑚 ∈ (0...𝐷) ↦ (if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))) = ((Poly1‘(𝐸s 𝐹)) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))))
124111, 123eqtr2d 2765 . . . . . 6 (𝜑 → ((Poly1‘(𝐸s 𝐹)) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))) = ((Poly1‘(𝐸s 𝐹)) Σg (𝑚 ∈ ℕ0 ↦ (if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))))
12517cmnmndd 19702 . . . . . . . 8 (𝜑 → (Poly1‘(𝐸s 𝐹)) ∈ Mnd)
1268gsumz 18729 . . . . . . . 8 (((Poly1‘(𝐸s 𝐹)) ∈ Mnd ∧ ℕ0 ∈ V) → ((Poly1‘(𝐸s 𝐹)) Σg (𝑚 ∈ ℕ0 ↦ (0g‘(Poly1‘(𝐸s 𝐹))))) = (0g‘(Poly1‘(𝐸s 𝐹))))
127125, 78, 126syl2anc 584 . . . . . . 7 (𝜑 → ((Poly1‘(𝐸s 𝐹)) Σg (𝑚 ∈ ℕ0 ↦ (0g‘(Poly1‘(𝐸s 𝐹))))) = (0g‘(Poly1‘(𝐸s 𝐹))))
12884adantr 480 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → 𝑍 = (0g‘(𝐸s 𝐹)))
129128oveq1d 7368 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (𝑍( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))) = ((0g‘(𝐸s 𝐹))( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))
130105, 109, 102syl2anc 584 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → ((0g‘(𝐸s 𝐹))( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))) = (0g‘(Poly1‘(𝐸s 𝐹))))
131129, 130eqtrd 2764 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (𝑍( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))) = (0g‘(Poly1‘(𝐸s 𝐹))))
132131mpteq2dva 5188 . . . . . . . 8 (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝑍( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))))) = (𝑚 ∈ ℕ0 ↦ (0g‘(Poly1‘(𝐸s 𝐹)))))
133132oveq2d 7369 . . . . . . 7 (𝜑 → ((Poly1‘(𝐸s 𝐹)) Σg (𝑚 ∈ ℕ0 ↦ (𝑍( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))) = ((Poly1‘(𝐸s 𝐹)) Σg (𝑚 ∈ ℕ0 ↦ (0g‘(Poly1‘(𝐸s 𝐹))))))
134 eqid 2729 . . . . . . . 8 (Poly1𝐸) = (Poly1𝐸)
135134, 11, 14, 7, 10, 2ressply10g 33521 . . . . . . 7 (𝜑 → (0g‘(Poly1𝐸)) = (0g‘(Poly1‘(𝐸s 𝐹))))
136127, 133, 1353eqtr4rd 2775 . . . . . 6 (𝜑 → (0g‘(Poly1𝐸)) = ((Poly1‘(𝐸s 𝐹)) Σg (𝑚 ∈ ℕ0 ↦ (𝑍( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑚(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))))
13714, 47, 40, 13, 62, 20, 63, 75, 85, 86, 90, 124, 136gsumply1eq 22213 . . . . 5 (𝜑 → (((Poly1‘(𝐸s 𝐹)) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))) = (0g‘(Poly1𝐸)) ↔ ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) = 𝑍))
13825ffnd 6657 . . . . . . . 8 (𝜑𝐴 Fn (0...𝐷))
139138adantr 480 . . . . . . 7 ((𝜑 ∧ ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) = 𝑍) → 𝐴 Fn (0...𝐷))
140119adantlr 715 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) = 𝑍) ∧ 𝑛 ∈ (0...𝐷)) → if(𝑛 ∈ (0...𝐷), (𝐴𝑛), 𝑍) = (𝐴𝑛))
141114eqeq1d 2731 . . . . . . . . 9 (𝑚 = 𝑛 → (if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) = 𝑍 ↔ if(𝑛 ∈ (0...𝐷), (𝐴𝑛), 𝑍) = 𝑍))
142 simplr 768 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) = 𝑍) ∧ 𝑛 ∈ (0...𝐷)) → ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) = 𝑍)
14344a1i 11 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) = 𝑍) → (0...𝐷) ⊆ ℕ0)
144143sselda 3937 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) = 𝑍) ∧ 𝑛 ∈ (0...𝐷)) → 𝑛 ∈ ℕ0)
145141, 142, 144rspcdva 3580 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) = 𝑍) ∧ 𝑛 ∈ (0...𝐷)) → if(𝑛 ∈ (0...𝐷), (𝐴𝑛), 𝑍) = 𝑍)
146140, 145eqtr3d 2766 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) = 𝑍) ∧ 𝑛 ∈ (0...𝐷)) → (𝐴𝑛) = 𝑍)
147139, 146fconst7v 32584 . . . . . 6 ((𝜑 ∧ ∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) = 𝑍) → 𝐴 = ((0...𝐷) × {𝑍}))
148147ex 412 . . . . 5 (𝜑 → (∀𝑚 ∈ ℕ0 if(𝑚 ∈ (0...𝐷), (𝐴𝑚), 𝑍) = 𝑍𝐴 = ((0...𝐷) × {𝑍})))
149137, 148sylbid 240 . . . 4 (𝜑 → (((Poly1‘(𝐸s 𝐹)) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))) = (0g‘(Poly1𝐸)) → 𝐴 = ((0...𝐷) × {𝑍})))
150149necon3d 2946 . . 3 (𝜑 → (𝐴 ≠ ((0...𝐷) × {𝑍}) → ((Poly1‘(𝐸s 𝐹)) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))) ≠ (0g‘(Poly1𝐸))))
15161, 150mpd 15 . 2 (𝜑 → ((Poly1‘(𝐸s 𝐹)) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))) ≠ (0g‘(Poly1𝐸)))
152 eqid 2729 . . . . 5 (𝐸s 𝐵) = (𝐸s 𝐵)
1531, 6, 14, 8, 11, 152, 7, 58, 10, 52, 45, 56evls1gsumadd 22228 . . . 4 (𝜑 → ((𝐸 evalSub1 𝐹)‘((Poly1‘(𝐸s 𝐹)) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))))))) = ((𝐸s 𝐵) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))))))))
154153fveq1d 6828 . . 3 (𝜑 → (((𝐸 evalSub1 𝐹)‘((Poly1‘(𝐸s 𝐹)) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))))‘𝑋) = (((𝐸s 𝐵) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))))‘𝑋))
15558adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0...𝐷)) → 𝐸 ∈ CRing)
15610adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ (0...𝐷)) → 𝐹 ∈ (SubRing‘𝐸))
1571, 14, 7, 155, 156, 6, 52evls1fvf 33516 . . . . . . . . 9 ((𝜑𝑛 ∈ (0...𝐷)) → ((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))))):𝐵𝐵)
158157feqmptd 6895 . . . . . . . 8 ((𝜑𝑛 ∈ (0...𝐷)) → ((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))))) = (𝑥𝐵 ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥)))
159158mpteq2dva 5188 . . . . . . 7 (𝜑 → (𝑛 ∈ (0...𝐷) ↦ ((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))) = (𝑛 ∈ (0...𝐷) ↦ (𝑥𝐵 ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥))))
160159oveq2d 7369 . . . . . 6 (𝜑 → ((𝐸s 𝐵) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹))))))) = ((𝐸s 𝐵) Σg (𝑛 ∈ (0...𝐷) ↦ (𝑥𝐵 ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥)))))
161160fveq1d 6828 . . . . 5 (𝜑 → (((𝐸s 𝐵) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))))‘𝑋) = (((𝐸s 𝐵) Σg (𝑛 ∈ (0...𝐷) ↦ (𝑥𝐵 ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥))))‘𝑋))
162 eqid 2729 . . . . . . 7 (0g‘(𝐸s 𝐵)) = (0g‘(𝐸s 𝐵))
1636fvexi 6840 . . . . . . . 8 𝐵 ∈ V
164163a1i 11 . . . . . . 7 (𝜑𝐵 ∈ V)
165155adantr 480 . . . . . . . . . 10 (((𝜑𝑛 ∈ (0...𝐷)) ∧ 𝑥𝐵) → 𝐸 ∈ CRing)
166156adantr 480 . . . . . . . . . 10 (((𝜑𝑛 ∈ (0...𝐷)) ∧ 𝑥𝐵) → 𝐹 ∈ (SubRing‘𝐸))
167 simpr 484 . . . . . . . . . 10 (((𝜑𝑛 ∈ (0...𝐷)) ∧ 𝑥𝐵) → 𝑥𝐵)
16852adantr 480 . . . . . . . . . 10 (((𝜑𝑛 ∈ (0...𝐷)) ∧ 𝑥𝐵) → ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))) ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
1691, 14, 6, 7, 165, 166, 167, 168evls1fvcl 22279 . . . . . . . . 9 (((𝜑𝑛 ∈ (0...𝐷)) ∧ 𝑥𝐵) → (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥) ∈ 𝐵)
170169an32s 652 . . . . . . . 8 (((𝜑𝑥𝐵) ∧ 𝑛 ∈ (0...𝐷)) → (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥) ∈ 𝐵)
171170anasss 466 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑛 ∈ (0...𝐷))) → (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥) ∈ 𝐵)
172 eqid 2729 . . . . . . . 8 (𝑛 ∈ (0...𝐷) ↦ (𝑥𝐵 ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥))) = (𝑛 ∈ (0...𝐷) ↦ (𝑥𝐵 ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥)))
173163a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ (0...𝐷)) → 𝐵 ∈ V)
174173mptexd 7164 . . . . . . . 8 ((𝜑𝑛 ∈ (0...𝐷)) → (𝑥𝐵 ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥)) ∈ V)
175 fvexd 6841 . . . . . . . 8 (𝜑 → (0g‘(𝐸s 𝐵)) ∈ V)
176172, 18, 174, 175fsuppmptdm 9285 . . . . . . 7 (𝜑 → (𝑛 ∈ (0...𝐷) ↦ (𝑥𝐵 ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥))) finSupp (0g‘(𝐸s 𝐵)))
177152, 6, 162, 164, 18, 81, 171, 176pwsgsum 19880 . . . . . 6 (𝜑 → ((𝐸s 𝐵) Σg (𝑛 ∈ (0...𝐷) ↦ (𝑥𝐵 ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥)))) = (𝑥𝐵 ↦ (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥)))))
178177fveq1d 6828 . . . . 5 (𝜑 → (((𝐸s 𝐵) Σg (𝑛 ∈ (0...𝐷) ↦ (𝑥𝐵 ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥))))‘𝑋) = ((𝑥𝐵 ↦ (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥))))‘𝑋))
179161, 178eqtrd 2764 . . . 4 (𝜑 → (((𝐸s 𝐵) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))))‘𝑋) = ((𝑥𝐵 ↦ (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥))))‘𝑋))
180 fveq2 6826 . . . . . . 7 (𝑥 = 𝑋 → (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥) = (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑋))
181180mpteq2dv 5189 . . . . . 6 (𝑥 = 𝑋 → (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥)) = (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑋)))
182181oveq2d 7369 . . . . 5 (𝑥 = 𝑋 → (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥))) = (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑋))))
183 eqidd 2730 . . . . 5 (𝜑 → (𝑥𝐵 ↦ (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥)))) = (𝑥𝐵 ↦ (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥)))))
184 extdgfialglem1.4 . . . . 5 (𝜑𝑋𝐵)
185 ovexd 7388 . . . . 5 (𝜑 → (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑋))) ∈ V)
186182, 183, 184, 185fvmptd4 6958 . . . 4 (𝜑 → ((𝑥𝐵 ↦ (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑥))))‘𝑋) = (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑋))))
187 eqid 2729 . . . . . . . 8 (.g‘(mulGrp‘𝐸)) = (.g‘(mulGrp‘𝐸))
188 extdgfialglem1.3 . . . . . . . 8 · = (.r𝐸)
189184adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (0...𝐷)) → 𝑋𝐵)
1901, 6, 14, 11, 47, 40, 187, 20, 188, 155, 156, 26, 46, 189evls1monply1 33533 . . . . . . 7 ((𝜑𝑛 ∈ (0...𝐷)) → (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑋) = ((𝐴𝑛) · (𝑛(.g‘(mulGrp‘𝐸))𝑋)))
191190mpteq2dva 5188 . . . . . 6 (𝜑 → (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑋)) = (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛) · (𝑛(.g‘(mulGrp‘𝐸))𝑋))))
192 nfv 1914 . . . . . . . 8 𝑛𝜑
193 ovexd 7388 . . . . . . . 8 ((𝜑𝑛 ∈ (0...𝐷)) → (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋) ∈ V)
194 extdgfialglem1.r . . . . . . . 8 𝐺 = (𝑛 ∈ (0...𝐷) ↦ (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋))
195192, 193, 194fnmptd 6627 . . . . . . 7 (𝜑𝐺 Fn (0...𝐷))
196 inidm 4180 . . . . . . 7 ((0...𝐷) ∩ (0...𝐷)) = (0...𝐷)
197 eqidd 2730 . . . . . . 7 ((𝜑𝑛 ∈ (0...𝐷)) → (𝐴𝑛) = (𝐴𝑛))
198194fvmpt2 6945 . . . . . . . . 9 ((𝑛 ∈ (0...𝐷) ∧ (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋) ∈ V) → (𝐺𝑛) = (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋))
199118, 193, 198syl2anc 584 . . . . . . . 8 ((𝜑𝑛 ∈ (0...𝐷)) → (𝐺𝑛) = (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋))
200 eqid 2729 . . . . . . . . . . 11 ((subringAlg ‘𝐸)‘𝐹) = ((subringAlg ‘𝐸)‘𝐹)
20128, 6sseqtrdi 3978 . . . . . . . . . . 11 (𝜑𝐹 ⊆ (Base‘𝐸))
202200, 80, 201srapwov 33574 . . . . . . . . . 10 (𝜑 → (.g‘(mulGrp‘𝐸)) = (.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹))))
203202oveqd 7370 . . . . . . . . 9 (𝜑 → (𝑛(.g‘(mulGrp‘𝐸))𝑋) = (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋))
204203adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ (0...𝐷)) → (𝑛(.g‘(mulGrp‘𝐸))𝑋) = (𝑛(.g‘(mulGrp‘((subringAlg ‘𝐸)‘𝐹)))𝑋))
205199, 204eqtr4d 2767 . . . . . . 7 ((𝜑𝑛 ∈ (0...𝐷)) → (𝐺𝑛) = (𝑛(.g‘(mulGrp‘𝐸))𝑋))
206138, 195, 18, 18, 196, 197, 205offval 7626 . . . . . 6 (𝜑 → (𝐴f · 𝐺) = (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛) · (𝑛(.g‘(mulGrp‘𝐸))𝑋))))
207191, 206eqtr4d 2767 . . . . 5 (𝜑 → (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑋)) = (𝐴f · 𝐺))
208207oveq2d 7369 . . . 4 (𝜑 → (𝐸 Σg (𝑛 ∈ (0...𝐷) ↦ (((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))‘𝑋))) = (𝐸 Σg (𝐴f · 𝐺)))
209179, 186, 2083eqtrd 2768 . . 3 (𝜑 → (((𝐸s 𝐵) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐸 evalSub1 𝐹)‘((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))))‘𝑋) = (𝐸 Σg (𝐴f · 𝐺)))
210 extdgfialglem2.3 . . 3 (𝜑 → (𝐸 Σg (𝐴f · 𝐺)) = 𝑍)
211154, 209, 2103eqtrd 2768 . 2 (𝜑 → (((𝐸 evalSub1 𝐹)‘((Poly1‘(𝐸s 𝐹)) Σg (𝑛 ∈ (0...𝐷) ↦ ((𝐴𝑛)( ·𝑠 ‘(Poly1‘(𝐸s 𝐹)))(𝑛(.g‘(mulGrp‘(Poly1‘(𝐸s 𝐹))))(var1‘(𝐸s 𝐹)))))))‘𝑋) = 𝑍)
2121, 2, 3, 4, 5, 6, 60, 151, 211, 184irngnzply1lem 33676 1 (𝜑𝑋 ∈ (𝐸 IntgRing 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3438  cdif 3902  wss 3905  ifcif 4478  {csn 4579   class class class wbr 5095  cmpt 5176   × cxp 5621  dom cdm 5623   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  f cof 7615  Fincfn 8879   finSupp cfsupp 9270  0cc0 11028  0cn0 12403  ...cfz 13429  Basecbs 17139  s cress 17160  .rcmulr 17181  Scalarcsca 17183   ·𝑠 cvsca 17184  0gc0g 17362   Σg cgsu 17363  s cpws 17369  Mndcmnd 18627  .gcmg 18965  SubGrpcsubg 19018  mulGrpcmgp 20044  Ringcrg 20137  CRingccrg 20138  SubRingcsubrg 20473  Fieldcfield 20634  SubDRingcsdrg 20690  LModclmod 20782  subringAlg csra 21094  var1cv1 22077  Poly1cpl1 22078   evalSub1 ces1 22217  dimcldim 33584   IntgRing cirng 33669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-fz 13430  df-fzo 13577  df-seq 13928  df-hash 14257  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-starv 17195  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ds 17202  df-unif 17203  df-hom 17204  df-cco 17205  df-0g 17364  df-gsum 17365  df-prds 17370  df-pws 17372  df-mre 17507  df-mrc 17508  df-acs 17510  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-mhm 18676  df-submnd 18677  df-grp 18834  df-minusg 18835  df-sbg 18836  df-mulg 18966  df-subg 19021  df-ghm 19111  df-cntz 19215  df-cmn 19680  df-abl 19681  df-mgp 20045  df-rng 20057  df-ur 20086  df-srg 20091  df-ring 20139  df-cring 20140  df-oppr 20241  df-dvdsr 20261  df-unit 20262  df-invr 20292  df-rhm 20376  df-subrng 20450  df-subrg 20474  df-rlreg 20598  df-drng 20635  df-field 20636  df-sdrg 20691  df-lmod 20784  df-lss 20854  df-lsp 20894  df-sra 21096  df-cnfld 21281  df-assa 21779  df-asp 21780  df-ascl 21781  df-psr 21835  df-mvr 21836  df-mpl 21837  df-opsr 21839  df-evls 21998  df-evl 21999  df-psr1 22081  df-vr1 22082  df-ply1 22083  df-coe1 22084  df-evls1 22219  df-evl1 22220  df-mdeg 25977  df-deg1 25978  df-mon1 26053  df-uc1p 26054  df-irng 33670
This theorem is referenced by:  extdgfialg  33680
  Copyright terms: Public domain W3C validator