Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ffs2 Structured version   Visualization version   GIF version

Theorem ffs2 31699
Description: Rewrite a function's support based with its codomain rather than the universal class. See also fsuppeq 8110. (Contributed by Thierry Arnoux, 27-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypothesis
Ref Expression
ffs2.1 𝐶 = (𝐵 ∖ {𝑍})
Assertion
Ref Expression
ffs2 ((𝐴𝑉𝑍𝑊𝐹:𝐴𝐵) → (𝐹 supp 𝑍) = (𝐹𝐶))

Proof of Theorem ffs2
StepHypRef Expression
1 fsuppeq 8110 . . 3 ((𝐴𝑉𝑍𝑊) → (𝐹:𝐴𝐵 → (𝐹 supp 𝑍) = (𝐹 “ (𝐵 ∖ {𝑍}))))
213impia 1118 . 2 ((𝐴𝑉𝑍𝑊𝐹:𝐴𝐵) → (𝐹 supp 𝑍) = (𝐹 “ (𝐵 ∖ {𝑍})))
3 ffs2.1 . . 3 𝐶 = (𝐵 ∖ {𝑍})
43imaeq2i 6015 . 2 (𝐹𝐶) = (𝐹 “ (𝐵 ∖ {𝑍}))
52, 4eqtr4di 2791 1 ((𝐴𝑉𝑍𝑊𝐹:𝐴𝐵) → (𝐹 supp 𝑍) = (𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wcel 2107  cdif 3911  {csn 4590  ccnv 5636  cima 5640  wf 6496  (class class class)co 7361   supp csupp 8096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-supp 8097
This theorem is referenced by:  resf1o  31701  fsumcvg4  32595  eulerpartlems  33024  eulerpartlemgf  33043
  Copyright terms: Public domain W3C validator