![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ffs2 | Structured version Visualization version GIF version |
Description: Rewrite a function's support based with its codomain rather than the universal class. See also fsuppeq 8216. (Contributed by Thierry Arnoux, 27-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
Ref | Expression |
---|---|
ffs2.1 | ⊢ 𝐶 = (𝐵 ∖ {𝑍}) |
Ref | Expression |
---|---|
ffs2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 supp 𝑍) = (◡𝐹 “ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppeq 8216 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐴⟶𝐵 → (𝐹 supp 𝑍) = (◡𝐹 “ (𝐵 ∖ {𝑍})))) | |
2 | 1 | 3impia 1117 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 supp 𝑍) = (◡𝐹 “ (𝐵 ∖ {𝑍}))) |
3 | ffs2.1 | . . 3 ⊢ 𝐶 = (𝐵 ∖ {𝑍}) | |
4 | 3 | imaeq2i 6087 | . 2 ⊢ (◡𝐹 “ 𝐶) = (◡𝐹 “ (𝐵 ∖ {𝑍})) |
5 | 2, 4 | eqtr4di 2798 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 supp 𝑍) = (◡𝐹 “ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 {csn 4648 ◡ccnv 5699 “ cima 5703 ⟶wf 6569 (class class class)co 7448 supp csupp 8201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-supp 8202 |
This theorem is referenced by: resf1o 32744 fsumcvg4 33896 eulerpartlems 34325 eulerpartlemgf 34344 |
Copyright terms: Public domain | W3C validator |