![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ffs2 | Structured version Visualization version GIF version |
Description: Rewrite a function's support based with its codomain rather than the universal class. See also fsuppeq 8154. (Contributed by Thierry Arnoux, 27-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
Ref | Expression |
---|---|
ffs2.1 | ⊢ 𝐶 = (𝐵 ∖ {𝑍}) |
Ref | Expression |
---|---|
ffs2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 supp 𝑍) = (◡𝐹 “ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppeq 8154 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐴⟶𝐵 → (𝐹 supp 𝑍) = (◡𝐹 “ (𝐵 ∖ {𝑍})))) | |
2 | 1 | 3impia 1114 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 supp 𝑍) = (◡𝐹 “ (𝐵 ∖ {𝑍}))) |
3 | ffs2.1 | . . 3 ⊢ 𝐶 = (𝐵 ∖ {𝑍}) | |
4 | 3 | imaeq2i 6047 | . 2 ⊢ (◡𝐹 “ 𝐶) = (◡𝐹 “ (𝐵 ∖ {𝑍})) |
5 | 2, 4 | eqtr4di 2782 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 supp 𝑍) = (◡𝐹 “ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∖ cdif 3937 {csn 4620 ◡ccnv 5665 “ cima 5669 ⟶wf 6529 (class class class)co 7401 supp csupp 8140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-supp 8141 |
This theorem is referenced by: resf1o 32424 fsumcvg4 33419 eulerpartlems 33848 eulerpartlemgf 33867 |
Copyright terms: Public domain | W3C validator |