![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ffs2 | Structured version Visualization version GIF version |
Description: Rewrite a function's support based with its codomain rather than the universal class. See also fsuppeq 8110. (Contributed by Thierry Arnoux, 27-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
Ref | Expression |
---|---|
ffs2.1 | ⊢ 𝐶 = (𝐵 ∖ {𝑍}) |
Ref | Expression |
---|---|
ffs2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 supp 𝑍) = (◡𝐹 “ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppeq 8110 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐴⟶𝐵 → (𝐹 supp 𝑍) = (◡𝐹 “ (𝐵 ∖ {𝑍})))) | |
2 | 1 | 3impia 1118 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 supp 𝑍) = (◡𝐹 “ (𝐵 ∖ {𝑍}))) |
3 | ffs2.1 | . . 3 ⊢ 𝐶 = (𝐵 ∖ {𝑍}) | |
4 | 3 | imaeq2i 6015 | . 2 ⊢ (◡𝐹 “ 𝐶) = (◡𝐹 “ (𝐵 ∖ {𝑍})) |
5 | 2, 4 | eqtr4di 2791 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 supp 𝑍) = (◡𝐹 “ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∖ cdif 3911 {csn 4590 ◡ccnv 5636 “ cima 5640 ⟶wf 6496 (class class class)co 7361 supp csupp 8096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-ov 7364 df-oprab 7365 df-mpo 7366 df-supp 8097 |
This theorem is referenced by: resf1o 31701 fsumcvg4 32595 eulerpartlems 33024 eulerpartlemgf 33043 |
Copyright terms: Public domain | W3C validator |