Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ffs2 | Structured version Visualization version GIF version |
Description: Rewrite a function's support based with its range rather than the universal class. See also frnsuppeq 7989. (Contributed by Thierry Arnoux, 27-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
Ref | Expression |
---|---|
ffs2.1 | ⊢ 𝐶 = (𝐵 ∖ {𝑍}) |
Ref | Expression |
---|---|
ffs2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 supp 𝑍) = (◡𝐹 “ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frnsuppeq 7989 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐴⟶𝐵 → (𝐹 supp 𝑍) = (◡𝐹 “ (𝐵 ∖ {𝑍})))) | |
2 | 1 | 3impia 1116 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 supp 𝑍) = (◡𝐹 “ (𝐵 ∖ {𝑍}))) |
3 | ffs2.1 | . . 3 ⊢ 𝐶 = (𝐵 ∖ {𝑍}) | |
4 | 3 | imaeq2i 5969 | . 2 ⊢ (◡𝐹 “ 𝐶) = (◡𝐹 “ (𝐵 ∖ {𝑍})) |
5 | 2, 4 | eqtr4di 2796 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 supp 𝑍) = (◡𝐹 “ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∖ cdif 3885 {csn 4563 ◡ccnv 5590 “ cima 5594 ⟶wf 6431 (class class class)co 7277 supp csupp 7975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5211 ax-sep 5225 ax-nul 5232 ax-pr 5354 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-iun 4928 df-br 5077 df-opab 5139 df-mpt 5160 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6393 df-fun 6437 df-fn 6438 df-f 6439 df-f1 6440 df-fo 6441 df-f1o 6442 df-fv 6443 df-ov 7280 df-oprab 7281 df-mpo 7282 df-supp 7976 |
This theorem is referenced by: resf1o 31062 fsumcvg4 31897 eulerpartlems 32324 eulerpartlemgf 32343 |
Copyright terms: Public domain | W3C validator |