![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ffs2 | Structured version Visualization version GIF version |
Description: Rewrite a function's support based with its range rather than the universal class. See also frnsuppeq 7544. (Contributed by Thierry Arnoux, 27-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.) |
Ref | Expression |
---|---|
ffs2.1 | ⊢ 𝐶 = (𝐵 ∖ {𝑍}) |
Ref | Expression |
---|---|
ffs2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 supp 𝑍) = (◡𝐹 “ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frnsuppeq 7544 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐴⟶𝐵 → (𝐹 supp 𝑍) = (◡𝐹 “ (𝐵 ∖ {𝑍})))) | |
2 | 1 | 3impia 1146 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 supp 𝑍) = (◡𝐹 “ (𝐵 ∖ {𝑍}))) |
3 | ffs2.1 | . . 3 ⊢ 𝐶 = (𝐵 ∖ {𝑍}) | |
4 | 3 | imaeq2i 5681 | . 2 ⊢ (◡𝐹 “ 𝐶) = (◡𝐹 “ (𝐵 ∖ {𝑍})) |
5 | 2, 4 | syl6eqr 2851 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝐹:𝐴⟶𝐵) → (𝐹 supp 𝑍) = (◡𝐹 “ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∖ cdif 3766 {csn 4368 ◡ccnv 5311 “ cima 5315 ⟶wf 6097 (class class class)co 6878 supp csupp 7532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-supp 7533 |
This theorem is referenced by: resf1o 30023 fsumcvg4 30512 eulerpartlems 30938 eulerpartlemgf 30957 |
Copyright terms: Public domain | W3C validator |