Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ffs2 Structured version   Visualization version   GIF version

Theorem ffs2 32684
Description: Rewrite a function's support based with its codomain rather than the universal class. See also fsuppeq 8115. (Contributed by Thierry Arnoux, 27-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypothesis
Ref Expression
ffs2.1 𝐶 = (𝐵 ∖ {𝑍})
Assertion
Ref Expression
ffs2 ((𝐴𝑉𝑍𝑊𝐹:𝐴𝐵) → (𝐹 supp 𝑍) = (𝐹𝐶))

Proof of Theorem ffs2
StepHypRef Expression
1 fsuppeq 8115 . . 3 ((𝐴𝑉𝑍𝑊) → (𝐹:𝐴𝐵 → (𝐹 supp 𝑍) = (𝐹 “ (𝐵 ∖ {𝑍}))))
213impia 1117 . 2 ((𝐴𝑉𝑍𝑊𝐹:𝐴𝐵) → (𝐹 supp 𝑍) = (𝐹 “ (𝐵 ∖ {𝑍})))
3 ffs2.1 . . 3 𝐶 = (𝐵 ∖ {𝑍})
43imaeq2i 6013 . 2 (𝐹𝐶) = (𝐹 “ (𝐵 ∖ {𝑍}))
52, 4eqtr4di 2782 1 ((𝐴𝑉𝑍𝑊𝐹:𝐴𝐵) → (𝐹 supp 𝑍) = (𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cdif 3902  {csn 4579  ccnv 5622  cima 5626  wf 6482  (class class class)co 7353   supp csupp 8100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-supp 8101
This theorem is referenced by:  resf1o  32686  fsumcvg4  33916  eulerpartlems  34327  eulerpartlemgf  34346
  Copyright terms: Public domain W3C validator