| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > offinsupp1 | Structured version Visualization version GIF version | ||
| Description: Finite support for a function operation. (Contributed by Thierry Arnoux, 8-Jul-2023.) |
| Ref | Expression |
|---|---|
| offinsupp1.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| offinsupp1.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| offinsupp1.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| offinsupp1.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
| offinsupp1.g | ⊢ (𝜑 → 𝐺:𝐴⟶𝑇) |
| offinsupp1.1 | ⊢ (𝜑 → 𝐹 finSupp 𝑌) |
| offinsupp1.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑌𝑅𝑥) = 𝑍) |
| Ref | Expression |
|---|---|
| offinsupp1 | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offinsupp1.1 | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 𝑌) | |
| 2 | 1 | fsuppimpd 9296 | . . 3 ⊢ (𝜑 → (𝐹 supp 𝑌) ∈ Fin) |
| 3 | ssidd 3967 | . . . 4 ⊢ (𝜑 → (𝐹 supp 𝑌) ⊆ (𝐹 supp 𝑌)) | |
| 4 | offinsupp1.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑌𝑅𝑥) = 𝑍) | |
| 5 | offinsupp1.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
| 6 | offinsupp1.g | . . . 4 ⊢ (𝜑 → 𝐺:𝐴⟶𝑇) | |
| 7 | offinsupp1.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 8 | offinsupp1.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
| 9 | 3, 4, 5, 6, 7, 8 | suppssof1 8155 | . . 3 ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) supp 𝑍) ⊆ (𝐹 supp 𝑌)) |
| 10 | 2, 9 | ssfid 9188 | . 2 ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) supp 𝑍) ∈ Fin) |
| 11 | ovexd 7404 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑆 ∧ 𝑗 ∈ 𝑇)) → (𝑖𝑅𝑗) ∈ V) | |
| 12 | inidm 4186 | . . . . 5 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 13 | 11, 5, 6, 7, 7, 12 | off 7651 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺):𝐴⟶V) |
| 14 | 13 | ffund 6674 | . . 3 ⊢ (𝜑 → Fun (𝐹 ∘f 𝑅𝐺)) |
| 15 | ovexd 7404 | . . 3 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) ∈ V) | |
| 16 | offinsupp1.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
| 17 | funisfsupp 9294 | . . 3 ⊢ ((Fun (𝐹 ∘f 𝑅𝐺) ∧ (𝐹 ∘f 𝑅𝐺) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝐹 ∘f 𝑅𝐺) finSupp 𝑍 ↔ ((𝐹 ∘f 𝑅𝐺) supp 𝑍) ∈ Fin)) | |
| 18 | 14, 15, 16, 17 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) finSupp 𝑍 ↔ ((𝐹 ∘f 𝑅𝐺) supp 𝑍) ∈ Fin)) |
| 19 | 10, 18 | mpbird 257 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 class class class wbr 5102 Fun wfun 6493 ⟶wf 6495 (class class class)co 7369 ∘f cof 7631 supp csupp 8116 Fincfn 8895 finSupp cfsupp 9288 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-supp 8117 df-1o 8411 df-en 8896 df-fin 8899 df-fsupp 9289 |
| This theorem is referenced by: fedgmullem1 33618 |
| Copyright terms: Public domain | W3C validator |