Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > offinsupp1 | Structured version Visualization version GIF version |
Description: Finite support for a function operation. (Contributed by Thierry Arnoux, 8-Jul-2023.) |
Ref | Expression |
---|---|
offinsupp1.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
offinsupp1.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
offinsupp1.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
offinsupp1.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
offinsupp1.g | ⊢ (𝜑 → 𝐺:𝐴⟶𝑇) |
offinsupp1.1 | ⊢ (𝜑 → 𝐹 finSupp 𝑌) |
offinsupp1.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑌𝑅𝑥) = 𝑍) |
Ref | Expression |
---|---|
offinsupp1 | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | offinsupp1.1 | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 𝑌) | |
2 | 1 | fsuppimpd 9135 | . . 3 ⊢ (𝜑 → (𝐹 supp 𝑌) ∈ Fin) |
3 | ssidd 3944 | . . . 4 ⊢ (𝜑 → (𝐹 supp 𝑌) ⊆ (𝐹 supp 𝑌)) | |
4 | offinsupp1.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑌𝑅𝑥) = 𝑍) | |
5 | offinsupp1.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
6 | offinsupp1.g | . . . 4 ⊢ (𝜑 → 𝐺:𝐴⟶𝑇) | |
7 | offinsupp1.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
8 | offinsupp1.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
9 | 3, 4, 5, 6, 7, 8 | suppssof1 8015 | . . 3 ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) supp 𝑍) ⊆ (𝐹 supp 𝑌)) |
10 | 2, 9 | ssfid 9042 | . 2 ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) supp 𝑍) ∈ Fin) |
11 | ovexd 7310 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑆 ∧ 𝑗 ∈ 𝑇)) → (𝑖𝑅𝑗) ∈ V) | |
12 | inidm 4152 | . . . . 5 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
13 | 11, 5, 6, 7, 7, 12 | off 7551 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺):𝐴⟶V) |
14 | 13 | ffund 6604 | . . 3 ⊢ (𝜑 → Fun (𝐹 ∘f 𝑅𝐺)) |
15 | ovexd 7310 | . . 3 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) ∈ V) | |
16 | offinsupp1.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
17 | funisfsupp 9133 | . . 3 ⊢ ((Fun (𝐹 ∘f 𝑅𝐺) ∧ (𝐹 ∘f 𝑅𝐺) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝐹 ∘f 𝑅𝐺) finSupp 𝑍 ↔ ((𝐹 ∘f 𝑅𝐺) supp 𝑍) ∈ Fin)) | |
18 | 14, 15, 16, 17 | syl3anc 1370 | . 2 ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) finSupp 𝑍 ↔ ((𝐹 ∘f 𝑅𝐺) supp 𝑍) ∈ Fin)) |
19 | 10, 18 | mpbird 256 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 class class class wbr 5074 Fun wfun 6427 ⟶wf 6429 (class class class)co 7275 ∘f cof 7531 supp csupp 7977 Fincfn 8733 finSupp cfsupp 9128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-supp 7978 df-1o 8297 df-en 8734 df-fin 8737 df-fsupp 9129 |
This theorem is referenced by: fedgmullem1 31710 |
Copyright terms: Public domain | W3C validator |