Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > offinsupp1 | Structured version Visualization version GIF version |
Description: Finite support for a function operation. (Contributed by Thierry Arnoux, 8-Jul-2023.) |
Ref | Expression |
---|---|
offinsupp1.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
offinsupp1.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
offinsupp1.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
offinsupp1.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
offinsupp1.g | ⊢ (𝜑 → 𝐺:𝐴⟶𝑇) |
offinsupp1.1 | ⊢ (𝜑 → 𝐹 finSupp 𝑌) |
offinsupp1.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑌𝑅𝑥) = 𝑍) |
Ref | Expression |
---|---|
offinsupp1 | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | offinsupp1.1 | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 𝑌) | |
2 | 1 | fsuppimpd 9065 | . . 3 ⊢ (𝜑 → (𝐹 supp 𝑌) ∈ Fin) |
3 | ssidd 3940 | . . . 4 ⊢ (𝜑 → (𝐹 supp 𝑌) ⊆ (𝐹 supp 𝑌)) | |
4 | offinsupp1.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑌𝑅𝑥) = 𝑍) | |
5 | offinsupp1.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
6 | offinsupp1.g | . . . 4 ⊢ (𝜑 → 𝐺:𝐴⟶𝑇) | |
7 | offinsupp1.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
8 | offinsupp1.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
9 | 3, 4, 5, 6, 7, 8 | suppssof1 7986 | . . 3 ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) supp 𝑍) ⊆ (𝐹 supp 𝑌)) |
10 | 2, 9 | ssfid 8971 | . 2 ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) supp 𝑍) ∈ Fin) |
11 | ovexd 7290 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑆 ∧ 𝑗 ∈ 𝑇)) → (𝑖𝑅𝑗) ∈ V) | |
12 | inidm 4149 | . . . . 5 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
13 | 11, 5, 6, 7, 7, 12 | off 7529 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺):𝐴⟶V) |
14 | 13 | ffund 6588 | . . 3 ⊢ (𝜑 → Fun (𝐹 ∘f 𝑅𝐺)) |
15 | ovexd 7290 | . . 3 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) ∈ V) | |
16 | offinsupp1.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
17 | funisfsupp 9063 | . . 3 ⊢ ((Fun (𝐹 ∘f 𝑅𝐺) ∧ (𝐹 ∘f 𝑅𝐺) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝐹 ∘f 𝑅𝐺) finSupp 𝑍 ↔ ((𝐹 ∘f 𝑅𝐺) supp 𝑍) ∈ Fin)) | |
18 | 14, 15, 16, 17 | syl3anc 1369 | . 2 ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) finSupp 𝑍 ↔ ((𝐹 ∘f 𝑅𝐺) supp 𝑍) ∈ Fin)) |
19 | 10, 18 | mpbird 256 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 Fun wfun 6412 ⟶wf 6414 (class class class)co 7255 ∘f cof 7509 supp csupp 7948 Fincfn 8691 finSupp cfsupp 9058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-supp 7949 df-1o 8267 df-en 8692 df-fin 8695 df-fsupp 9059 |
This theorem is referenced by: fedgmullem1 31612 |
Copyright terms: Public domain | W3C validator |