![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > offinsupp1 | Structured version Visualization version GIF version |
Description: Finite support for a function operation. (Contributed by Thierry Arnoux, 8-Jul-2023.) |
Ref | Expression |
---|---|
offinsupp1.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
offinsupp1.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
offinsupp1.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
offinsupp1.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
offinsupp1.g | ⊢ (𝜑 → 𝐺:𝐴⟶𝑇) |
offinsupp1.1 | ⊢ (𝜑 → 𝐹 finSupp 𝑌) |
offinsupp1.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑌𝑅𝑥) = 𝑍) |
Ref | Expression |
---|---|
offinsupp1 | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | offinsupp1.1 | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 𝑌) | |
2 | 1 | fsuppimpd 9368 | . . 3 ⊢ (𝜑 → (𝐹 supp 𝑌) ∈ Fin) |
3 | ssidd 4005 | . . . 4 ⊢ (𝜑 → (𝐹 supp 𝑌) ⊆ (𝐹 supp 𝑌)) | |
4 | offinsupp1.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑌𝑅𝑥) = 𝑍) | |
5 | offinsupp1.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
6 | offinsupp1.g | . . . 4 ⊢ (𝜑 → 𝐺:𝐴⟶𝑇) | |
7 | offinsupp1.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
8 | offinsupp1.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
9 | 3, 4, 5, 6, 7, 8 | suppssof1 8183 | . . 3 ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) supp 𝑍) ⊆ (𝐹 supp 𝑌)) |
10 | 2, 9 | ssfid 9266 | . 2 ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) supp 𝑍) ∈ Fin) |
11 | ovexd 7443 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑆 ∧ 𝑗 ∈ 𝑇)) → (𝑖𝑅𝑗) ∈ V) | |
12 | inidm 4218 | . . . . 5 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
13 | 11, 5, 6, 7, 7, 12 | off 7687 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺):𝐴⟶V) |
14 | 13 | ffund 6721 | . . 3 ⊢ (𝜑 → Fun (𝐹 ∘f 𝑅𝐺)) |
15 | ovexd 7443 | . . 3 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) ∈ V) | |
16 | offinsupp1.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
17 | funisfsupp 9366 | . . 3 ⊢ ((Fun (𝐹 ∘f 𝑅𝐺) ∧ (𝐹 ∘f 𝑅𝐺) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝐹 ∘f 𝑅𝐺) finSupp 𝑍 ↔ ((𝐹 ∘f 𝑅𝐺) supp 𝑍) ∈ Fin)) | |
18 | 14, 15, 16, 17 | syl3anc 1371 | . 2 ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) finSupp 𝑍 ↔ ((𝐹 ∘f 𝑅𝐺) supp 𝑍) ∈ Fin)) |
19 | 10, 18 | mpbird 256 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 class class class wbr 5148 Fun wfun 6537 ⟶wf 6539 (class class class)co 7408 ∘f cof 7667 supp csupp 8145 Fincfn 8938 finSupp cfsupp 9360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-om 7855 df-supp 8146 df-1o 8465 df-en 8939 df-fin 8942 df-fsupp 9361 |
This theorem is referenced by: fedgmullem1 32709 |
Copyright terms: Public domain | W3C validator |