Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  offinsupp1 Structured version   Visualization version   GIF version

Theorem offinsupp1 32709
Description: Finite support for a function operation. (Contributed by Thierry Arnoux, 8-Jul-2023.)
Hypotheses
Ref Expression
offinsupp1.a (𝜑𝐴𝑉)
offinsupp1.y (𝜑𝑌𝑈)
offinsupp1.z (𝜑𝑍𝑊)
offinsupp1.f (𝜑𝐹:𝐴𝑆)
offinsupp1.g (𝜑𝐺:𝐴𝑇)
offinsupp1.1 (𝜑𝐹 finSupp 𝑌)
offinsupp1.2 ((𝜑𝑥𝑇) → (𝑌𝑅𝑥) = 𝑍)
Assertion
Ref Expression
offinsupp1 (𝜑 → (𝐹f 𝑅𝐺) finSupp 𝑍)
Distinct variable groups:   𝑥,𝐺   𝑥,𝑅   𝑥,𝑇   𝑥,𝑌   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝑆(𝑥)   𝑈(𝑥)   𝐹(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem offinsupp1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 offinsupp1.1 . . . 4 (𝜑𝐹 finSupp 𝑌)
21fsuppimpd 9386 . . 3 (𝜑 → (𝐹 supp 𝑌) ∈ Fin)
3 ssidd 3987 . . . 4 (𝜑 → (𝐹 supp 𝑌) ⊆ (𝐹 supp 𝑌))
4 offinsupp1.2 . . . 4 ((𝜑𝑥𝑇) → (𝑌𝑅𝑥) = 𝑍)
5 offinsupp1.f . . . 4 (𝜑𝐹:𝐴𝑆)
6 offinsupp1.g . . . 4 (𝜑𝐺:𝐴𝑇)
7 offinsupp1.a . . . 4 (𝜑𝐴𝑉)
8 offinsupp1.y . . . 4 (𝜑𝑌𝑈)
93, 4, 5, 6, 7, 8suppssof1 8203 . . 3 (𝜑 → ((𝐹f 𝑅𝐺) supp 𝑍) ⊆ (𝐹 supp 𝑌))
102, 9ssfid 9278 . 2 (𝜑 → ((𝐹f 𝑅𝐺) supp 𝑍) ∈ Fin)
11 ovexd 7445 . . . . 5 ((𝜑 ∧ (𝑖𝑆𝑗𝑇)) → (𝑖𝑅𝑗) ∈ V)
12 inidm 4207 . . . . 5 (𝐴𝐴) = 𝐴
1311, 5, 6, 7, 7, 12off 7694 . . . 4 (𝜑 → (𝐹f 𝑅𝐺):𝐴⟶V)
1413ffund 6715 . . 3 (𝜑 → Fun (𝐹f 𝑅𝐺))
15 ovexd 7445 . . 3 (𝜑 → (𝐹f 𝑅𝐺) ∈ V)
16 offinsupp1.z . . 3 (𝜑𝑍𝑊)
17 funisfsupp 9384 . . 3 ((Fun (𝐹f 𝑅𝐺) ∧ (𝐹f 𝑅𝐺) ∈ V ∧ 𝑍𝑊) → ((𝐹f 𝑅𝐺) finSupp 𝑍 ↔ ((𝐹f 𝑅𝐺) supp 𝑍) ∈ Fin))
1814, 15, 16, 17syl3anc 1373 . 2 (𝜑 → ((𝐹f 𝑅𝐺) finSupp 𝑍 ↔ ((𝐹f 𝑅𝐺) supp 𝑍) ∈ Fin))
1910, 18mpbird 257 1 (𝜑 → (𝐹f 𝑅𝐺) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3464   class class class wbr 5124  Fun wfun 6530  wf 6532  (class class class)co 7410  f cof 7674   supp csupp 8164  Fincfn 8964   finSupp cfsupp 9378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-supp 8165  df-1o 8485  df-en 8965  df-fin 8968  df-fsupp 9379
This theorem is referenced by:  fedgmullem1  33674
  Copyright terms: Public domain W3C validator