Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  offinsupp1 Structured version   Visualization version   GIF version

Theorem offinsupp1 32741
Description: Finite support for a function operation. (Contributed by Thierry Arnoux, 8-Jul-2023.)
Hypotheses
Ref Expression
offinsupp1.a (𝜑𝐴𝑉)
offinsupp1.y (𝜑𝑌𝑈)
offinsupp1.z (𝜑𝑍𝑊)
offinsupp1.f (𝜑𝐹:𝐴𝑆)
offinsupp1.g (𝜑𝐺:𝐴𝑇)
offinsupp1.1 (𝜑𝐹 finSupp 𝑌)
offinsupp1.2 ((𝜑𝑥𝑇) → (𝑌𝑅𝑥) = 𝑍)
Assertion
Ref Expression
offinsupp1 (𝜑 → (𝐹f 𝑅𝐺) finSupp 𝑍)
Distinct variable groups:   𝑥,𝐺   𝑥,𝑅   𝑥,𝑇   𝑥,𝑌   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝑆(𝑥)   𝑈(𝑥)   𝐹(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem offinsupp1
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 offinsupp1.1 . . . 4 (𝜑𝐹 finSupp 𝑌)
21fsuppimpd 9439 . . 3 (𝜑 → (𝐹 supp 𝑌) ∈ Fin)
3 ssidd 4032 . . . 4 (𝜑 → (𝐹 supp 𝑌) ⊆ (𝐹 supp 𝑌))
4 offinsupp1.2 . . . 4 ((𝜑𝑥𝑇) → (𝑌𝑅𝑥) = 𝑍)
5 offinsupp1.f . . . 4 (𝜑𝐹:𝐴𝑆)
6 offinsupp1.g . . . 4 (𝜑𝐺:𝐴𝑇)
7 offinsupp1.a . . . 4 (𝜑𝐴𝑉)
8 offinsupp1.y . . . 4 (𝜑𝑌𝑈)
93, 4, 5, 6, 7, 8suppssof1 8240 . . 3 (𝜑 → ((𝐹f 𝑅𝐺) supp 𝑍) ⊆ (𝐹 supp 𝑌))
102, 9ssfid 9329 . 2 (𝜑 → ((𝐹f 𝑅𝐺) supp 𝑍) ∈ Fin)
11 ovexd 7483 . . . . 5 ((𝜑 ∧ (𝑖𝑆𝑗𝑇)) → (𝑖𝑅𝑗) ∈ V)
12 inidm 4248 . . . . 5 (𝐴𝐴) = 𝐴
1311, 5, 6, 7, 7, 12off 7732 . . . 4 (𝜑 → (𝐹f 𝑅𝐺):𝐴⟶V)
1413ffund 6751 . . 3 (𝜑 → Fun (𝐹f 𝑅𝐺))
15 ovexd 7483 . . 3 (𝜑 → (𝐹f 𝑅𝐺) ∈ V)
16 offinsupp1.z . . 3 (𝜑𝑍𝑊)
17 funisfsupp 9437 . . 3 ((Fun (𝐹f 𝑅𝐺) ∧ (𝐹f 𝑅𝐺) ∈ V ∧ 𝑍𝑊) → ((𝐹f 𝑅𝐺) finSupp 𝑍 ↔ ((𝐹f 𝑅𝐺) supp 𝑍) ∈ Fin))
1814, 15, 16, 17syl3anc 1371 . 2 (𝜑 → ((𝐹f 𝑅𝐺) finSupp 𝑍 ↔ ((𝐹f 𝑅𝐺) supp 𝑍) ∈ Fin))
1910, 18mpbird 257 1 (𝜑 → (𝐹f 𝑅𝐺) finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488   class class class wbr 5166  Fun wfun 6567  wf 6569  (class class class)co 7448  f cof 7712   supp csupp 8201  Fincfn 9003   finSupp cfsupp 9431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-supp 8202  df-1o 8522  df-en 9004  df-fin 9007  df-fsupp 9432
This theorem is referenced by:  fedgmullem1  33642
  Copyright terms: Public domain W3C validator