![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > offinsupp1 | Structured version Visualization version GIF version |
Description: Finite support for a function operation. (Contributed by Thierry Arnoux, 8-Jul-2023.) |
Ref | Expression |
---|---|
offinsupp1.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
offinsupp1.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
offinsupp1.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
offinsupp1.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
offinsupp1.g | ⊢ (𝜑 → 𝐺:𝐴⟶𝑇) |
offinsupp1.1 | ⊢ (𝜑 → 𝐹 finSupp 𝑌) |
offinsupp1.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑌𝑅𝑥) = 𝑍) |
Ref | Expression |
---|---|
offinsupp1 | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | offinsupp1.1 | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 𝑌) | |
2 | 1 | fsuppimpd 9406 | . . 3 ⊢ (𝜑 → (𝐹 supp 𝑌) ∈ Fin) |
3 | ssidd 4002 | . . . 4 ⊢ (𝜑 → (𝐹 supp 𝑌) ⊆ (𝐹 supp 𝑌)) | |
4 | offinsupp1.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝑌𝑅𝑥) = 𝑍) | |
5 | offinsupp1.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
6 | offinsupp1.g | . . . 4 ⊢ (𝜑 → 𝐺:𝐴⟶𝑇) | |
7 | offinsupp1.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
8 | offinsupp1.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
9 | 3, 4, 5, 6, 7, 8 | suppssof1 8206 | . . 3 ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) supp 𝑍) ⊆ (𝐹 supp 𝑌)) |
10 | 2, 9 | ssfid 9294 | . 2 ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) supp 𝑍) ∈ Fin) |
11 | ovexd 7451 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑆 ∧ 𝑗 ∈ 𝑇)) → (𝑖𝑅𝑗) ∈ V) | |
12 | inidm 4217 | . . . . 5 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
13 | 11, 5, 6, 7, 7, 12 | off 7700 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺):𝐴⟶V) |
14 | 13 | ffund 6724 | . . 3 ⊢ (𝜑 → Fun (𝐹 ∘f 𝑅𝐺)) |
15 | ovexd 7451 | . . 3 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) ∈ V) | |
16 | offinsupp1.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
17 | funisfsupp 9404 | . . 3 ⊢ ((Fun (𝐹 ∘f 𝑅𝐺) ∧ (𝐹 ∘f 𝑅𝐺) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝐹 ∘f 𝑅𝐺) finSupp 𝑍 ↔ ((𝐹 ∘f 𝑅𝐺) supp 𝑍) ∈ Fin)) | |
18 | 14, 15, 16, 17 | syl3anc 1368 | . 2 ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) finSupp 𝑍 ↔ ((𝐹 ∘f 𝑅𝐺) supp 𝑍) ∈ Fin)) |
19 | 10, 18 | mpbird 256 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 Vcvv 3462 class class class wbr 5145 Fun wfun 6540 ⟶wf 6542 (class class class)co 7416 ∘f cof 7680 supp csupp 8166 Fincfn 8966 finSupp cfsupp 9398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 df-of 7682 df-om 7869 df-supp 8167 df-1o 8488 df-en 8967 df-fin 8970 df-fsupp 9399 |
This theorem is referenced by: fedgmullem1 33530 |
Copyright terms: Public domain | W3C validator |